NER automata dynamics on random graphs

被引:0
|
作者
Hernandez, G. [1 ,2 ]
Salinas, L. [3 ]
机构
[1] Andres Bello Natl Univ, Sch Civil Engn, Santiago, Chile
[2] Univ Chile, Ctr Math Modeling, Santiago, Chile
[3] Univ Fed Santa Maria, Dept Informat, Valparaiso, Chile
关键词
NER automata; transient time; damage spreading; random graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The average transient time, damage spreading and qualitative effects are deter-mined for the NER automata parallel dynamics defined on random graphs. It was obtained that the NER automata converge with linear rate to fixed points, the average damage spreading presents a linear response without discontinuity at the origin for small damage limit and the hamming distance between the initial and steady configurations falls in the range [0.82,0.88]. These results can be interpreted as a generalization of ref. [8] to the case of random graphs where the global connectivity is present.
引用
收藏
页码:203 / +
页数:2
相关论文
共 50 条
  • [1] Mean field dynamics of stochastic cellular automata for random and small-world graphs
    Waldorp, Lourens
    Kossakowski, Jolanda
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 97
  • [2] SANDPILE DYNAMICS ON RANDOM GRAPHS
    BONABEAU, E
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 327 - 328
  • [3] Constrained Markovian Dynamics of Random Graphs
    A. C. C. Coolen
    A. De Martino
    A. Annibale
    Journal of Statistical Physics, 2009, 136 : 1035 - 1067
  • [4] Dynamics of random graphs with bounded degrees
    Ben-Naim, E.
    Krapivsky, P. L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [5] Majority dynamics on sparse random graphs
    Chakraborti, Debsoumya
    Kim, Jeong Han
    Lee, Joonkyung
    Tran, Tuan
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 171 - 191
  • [6] METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS
    Dommers, S.
    Den Hollander, F.
    Jovanovski, O.
    Nardi, F. R.
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2130 - 2158
  • [7] Dynamics of excitable nodes on random graphs
    Manchanda, K.
    Singh, T. Umeshkanta
    Ramaswamy, R.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 803 - 809
  • [8] Consensus dynamics on random rectangular graphs
    Estrada, Ernesto
    Sheerin, Matthew
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 323 : 20 - 26
  • [9] Best response dynamics on random graphs
    Chellig, Jordan
    Durbac, Calina
    Fountoulakis, Nikolaos
    GAMES AND ECONOMIC BEHAVIOR, 2022, 131 : 141 - 170
  • [10] Dynamics of hot random hyperbolic graphs
    Papadopoulos, Fragkiskos
    Zambirinis, Sofoclis
    PHYSICAL REVIEW E, 2022, 105 (02)