On majority domination in graphs

被引:9
|
作者
Holm, TS [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
majority domination; NP-completeness; external problems; graph algorithms;
D O I
10.1016/S0012-365X(00)00370-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A majority dominating function on the vertex set of a graph G=(V,E) is a function g:V --> {1,-1} such that g(N[v]) greater than or equal to1 for at least half of the vertices v in V. The weight of a majority dominating function is denoted as g(V) and is Sigma g(v) over all v in V. The majority domination number of a graph is the minimum possible weight of a majority dominating function, and is denoted as gamma (maj)(G). We determine the majority domination numbers of certain families of graphs. Moreover, we show that the decision problem corresponding to computing the majority domination number of an arbitrary disjoint union of complete graphs is NP-complete. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] MAJORITY DOMINATION IN GRAPHS
    BROERE, I
    HATTINGH, JH
    HENNING, MA
    MCRAE, AA
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 125 - 135
  • [2] Majority Roman domination in graphs
    Prabhavathy, S. Anandha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [3] On Majority Total Domination in Graphs
    Muthuselvi, A.
    Arumugam, S.
    UTILITAS MATHEMATICA, 2019, 113 : 159 - 167
  • [4] On Majority Total Domination in Graphs
    Muthuselvi, A.
    Arumugam, S.
    UTILITAS MATHEMATICA, 2020, 114 : 239 - 247
  • [5] Signed Majority Edge Domination in Graphs
    Xing, Hua-Ming
    Liu, Aiping
    Huang, Zhong-Sheng
    UTILITAS MATHEMATICA, 2010, 83 : 255 - 264
  • [6] Majority double Roman domination in graphs
    Prabhavathy, S. Anandha
    Hamid, I. Sahul
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (06)
  • [7] On signed majority total domination in graphs
    Xing, HM
    Sun, L
    Chen, XG
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) : 341 - 348
  • [8] On signed majority total domination in graphs
    Hua-Ming Xing
    Liang Sun
    Xue-Gang Chen
    Czechoslovak Mathematical Journal, 2005, 55 : 341 - 348
  • [9] Signed edge majority domination numbers in graphs
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 41 : 291 - 296
  • [10] CONNECTED MAJORITY DOMINATION VERTEX CRITICAL GRAPHS
    Manora, J. Joseline
    Vairavel, T. Muthukani
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 112 - 123