On majority domination in graphs

被引:9
|
作者
Holm, TS [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
majority domination; NP-completeness; external problems; graph algorithms;
D O I
10.1016/S0012-365X(00)00370-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A majority dominating function on the vertex set of a graph G=(V,E) is a function g:V --> {1,-1} such that g(N[v]) greater than or equal to1 for at least half of the vertices v in V. The weight of a majority dominating function is denoted as g(V) and is Sigma g(v) over all v in V. The majority domination number of a graph is the minimum possible weight of a majority dominating function, and is denoted as gamma (maj)(G). We determine the majority domination numbers of certain families of graphs. Moreover, we show that the decision problem corresponding to computing the majority domination number of an arbitrary disjoint union of complete graphs is NP-complete. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Structural domination of graphs
    Bascó, G
    Tuza, Z
    ARS COMBINATORIA, 2002, 63 : 235 - 256
  • [32] Double domination in graphs
    Harary, F
    Haynes, TW
    ARS COMBINATORIA, 2000, 55 : 201 - 213
  • [33] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [34] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [35] The Domination and Independent Domination Problems in Supergrid Graphs
    Hung, Ruo-Wei
    Chiu, Ming-Jung
    Chen, Jong-Shin
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT I, 2021, 12949 : 631 - 646
  • [36] GRAPHS WITH EQUAL DOMINATION AND CERTIFIED DOMINATION NUMBERS
    Dettlaff, Magda
    Lemanska, Magdalena
    Miotk, Mateusz
    Topp, Jerzy
    Ziemann, Radoslaw
    Zylinski, Pawel
    OPUSCULA MATHEMATICA, 2019, 39 (06) : 815 - 827
  • [37] DOMINATION SUBDIVISION AND DOMINATION MULTISUBDIVISION NUMBERS OF GRAPHS
    Dettlaff, Magda
    Raczek, Joanna
    Topp, Jerzy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 829 - 839
  • [38] Domination and upper domination of direct product graphs
    Defant, Colin
    Iyer, Sumun
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2742 - 2752
  • [39] Rings domination in graphs
    Abed, Saja Saeed
    Al-Harere, M. N.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1833 - 1839
  • [40] On α-Split Domination in Graphs
    Amutha, S.
    Prabha, K. Suriya
    Anbazhagan, N.
    Gomathi, S. Sankara
    Cangul, Ismail Naci
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (04) : 593 - 597