A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis

被引:9
|
作者
Duff, Lisa [1 ,2 ]
Scarsbrook, Andrew F. [3 ,4 ]
Mackie, Sarah L. [5 ,6 ]
Frood, Russell [3 ,4 ]
Bailey, Marc [1 ,7 ]
Morgan, Ann W. [1 ,6 ]
Tsoumpas, Charalampos [1 ,8 ,9 ]
机构
[1] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, 8-49b Worsley Bldg,Clarendon Way, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Inst Med & Biol Engn, Leeds, W Yorkshire, England
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Leeds, W Yorkshire, England
[4] St James Univ Hosp, Dept Radiol, Leeds, W Yorkshire, England
[5] Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England
[6] Leeds Teaching Hosp NHS Trust, Biomed Res Ctr, NIHR Leeds, Leeds, W Yorkshire, England
[7] Leeds Gen Infirm, Leeds Vasc Inst, Leeds, W Yorkshire, England
[8] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst, New York, NY 10029 USA
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
关键词
Large-vessel vasculitis; FDG PET; CT; Radiomic feature analysis; Diagnosis; Giant cell arteritis; LARGE-VESSEL VASCULITIS; GIANT-CELL ARTERITIS; POLYMYALGIA-RHEUMATICA; F-18-FDG PET; EANM; COHORT;
D O I
10.1007/s12350-022-02927-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [F-18]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. Methods The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. Results Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. Conclusion A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
引用
收藏
页码:3315 / 3331
页数:17
相关论文
共 50 条
  • [1] Methodological Framework for AI-assisted diagnosis of Active Aortitis using Radiomic Analysis of FDG PET-CT
    Duff, L.
    Scarsbrook, A.
    Mackie, S.
    Bailey, M.
    Frood, R.
    Morgan, A.
    Tsoumpas, C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S508 - S508
  • [2] A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET–CT images: Initial analysis
    Lisa Duff
    Andrew F. Scarsbrook
    Sarah L. Mackie
    Russell Frood
    Marc Bailey
    Ann W. Morgan
    Charalampos Tsoumpas
    Journal of Nuclear Cardiology, 2022, 29 : 3315 - 3331
  • [3] Automated AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT imaging
    Duff, L.
    Scarsbrook, A. F.
    Ravikumar, N.
    Frood, R.
    Mackie, S. L.
    Bailey, M.
    Tarkin, J. M.
    Mason, J. C.
    Frangi, A.
    Morgan, A. W.
    Tsoumpas, C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S104 - S105
  • [4] An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
    Duff, Lisa M.
    Scarsbrook, Andrew F.
    Ravikumar, Nishant
    Frood, Russell
    van Praagh, Gijs D.
    Mackie, Sarah L.
    Bailey, Marc A.
    Tarkin, Jason M.
    Mason, Justin C.
    van der Geest, Kornelis S. M.
    Slart, Riemer H. J. A.
    Morgan, Ann W.
    Tsoumpas, Charalampos
    BIOMOLECULES, 2023, 13 (02)
  • [5] Radiomic Analysis of FDG PET-CT in Non-Small Cell Lung Cancer
    Albattat, Khamael
    Smith, Rhodri
    Morley, Nicholas
    Marshall, Christopher
    QUALITY OF LIFE RESEARCH, 2023, 32 (SUPPL 1) : S16 - S16
  • [6] AI-assisted quantitative analysis of FDG-PET in medial temporal lobe epilepsy
    Peng, Syu-Jyun
    Shih, Yen-Cheng
    Lee, Tse-Hao
    Yu, Hsiang-Yu
    EPILEPSIA, 2021, 62 : 236 - 236
  • [7] Differential diagnosis of tuberculosis and sarcoidosis related mediastinal lymhp nodes using PET-CT radiomic analysis
    Unat, Damla Serce
    Aguloglu, Nursin
    Unat, Omer Selim
    Aksu, Aysegul
    Erer, Onur Fevzi
    Ozdemir, Ozer
    Polat, Gulru
    EUROPEAN RESPIRATORY JOURNAL, 2024, 64
  • [8] Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer
    Zongyao Li
    Kazuhiro Kitajima
    Kenji Hirata
    Ren Togo
    Junki Takenaka
    Yasuo Miyoshi
    Kohsuke Kudo
    Takahiro Ogawa
    Miki Haseyama
    EJNMMI Research, 11
  • [9] Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer
    Li, Zongyao
    Kitajima, Kazuhiro
    Hirata, Kenji
    Togo, Ren
    Takenaka, Junki
    Miyoshi, Yasuo
    Kudo, Kohsuke
    Ogawa, Takahiro
    Haseyama, Miki
    EJNMMI RESEARCH, 2021, 11 (01)
  • [10] Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT
    P. J. Brown
    J. Zhong
    R. Frood
    S. Currie
    A. Gilbert
    A. L. Appelt
    D. Sebag-Montefiore
    A. Scarsbrook
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 2790 - 2799