An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images

被引:12
|
作者
Duff, Lisa M. [1 ,2 ]
Scarsbrook, Andrew F. [1 ,3 ]
Ravikumar, Nishant [1 ,4 ]
Frood, Russell [1 ,3 ]
van Praagh, Gijs D. [5 ]
Mackie, Sarah L. [1 ,6 ,7 ]
Bailey, Marc A. [1 ,8 ]
Tarkin, Jason M. [9 ]
Mason, Justin C. [10 ]
van der Geest, Kornelis S. M. [11 ]
Slart, Riemer H. J. A. [5 ]
Morgan, Ann W. [1 ,6 ,7 ]
Tsoumpas, Charalampos [1 ,5 ]
机构
[1] Univ Leeds, Sch Med, Leeds LS2 9JT, England
[2] Univ Leeds, Inst Med & Biol Engn, Leeds LS2 9JT, England
[3] St James Univ Hosp, Dept Radiol, Leeds LS9 7TF, England
[4] Univ Leeds, Ctr Computat Imaging & Simulat Technol Biomed, Leeds LS2 9JT, England
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9713 GZ Groningen, Netherlands
[6] Leeds Teaching Hosp NHS Trust, NIHR Leeds Biomed Res Ctr, Leeds LS7 4SA, England
[7] Leeds Teaching Hosp NHS Trust, NIHR Leeds MedTech & Vitro Diagnost Cooperat, Leeds LS7 4SA, England
[8] Leeds Gen Infirm, Leeds Vasc Inst, Leeds LS2 9NS, England
[9] Univ Cambridge, Div Cardiovasc Med, Cambridge CB2 0QQ, England
[10] Imperial Coll London, Natl Heart & Lung Inst, Dept Biomed Photon Imaging, London SW3 6LY, England
[11] Univ Groningen, Univ Med Ctr Groningen, Dept Rheumatol & Clin Immunol, NL-9713 GZ Groningen, Netherlands
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
aortitis; radiomics; machine learning; convolutional neural network; positron emission tomography; computed tomography; LARGE-VESSEL VASCULITIS; ASSOCIATION; MANAGEMENT; FEATURES; SOCIETY; AREAS; EANM;
D O I
10.3390/biom13020343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Automated AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT imaging
    Duff, L.
    Scarsbrook, A. F.
    Ravikumar, N.
    Frood, R.
    Mackie, S. L.
    Bailey, M.
    Tarkin, J. M.
    Mason, J. C.
    Frangi, A.
    Morgan, A. W.
    Tsoumpas, C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S104 - S105
  • [2] A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis
    Duff, Lisa
    Scarsbrook, Andrew F.
    Mackie, Sarah L.
    Frood, Russell
    Bailey, Marc
    Morgan, Ann W.
    Tsoumpas, Charalampos
    JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (06) : 3315 - 3331
  • [3] Methodological Framework for AI-assisted diagnosis of Active Aortitis using Radiomic Analysis of FDG PET-CT
    Duff, L.
    Scarsbrook, A.
    Mackie, S.
    Bailey, M.
    Frood, R.
    Morgan, A.
    Tsoumpas, C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S508 - S508
  • [4] A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET–CT images: Initial analysis
    Lisa Duff
    Andrew F. Scarsbrook
    Sarah L. Mackie
    Russell Frood
    Marc Bailey
    Ann W. Morgan
    Charalampos Tsoumpas
    Journal of Nuclear Cardiology, 2022, 29 : 3315 - 3331
  • [5] Radiomic Analysis of FDG PET-CT in Non-Small Cell Lung Cancer
    Albattat, Khamael
    Smith, Rhodri
    Morley, Nicholas
    Marshall, Christopher
    QUALITY OF LIFE RESEARCH, 2023, 32 (SUPPL 1) : S16 - S16
  • [6] Differential diagnosis of tuberculosis and sarcoidosis related mediastinal lymhp nodes using PET-CT radiomic analysis
    Unat, Damla Serce
    Aguloglu, Nursin
    Unat, Omer Selim
    Aksu, Aysegul
    Erer, Onur Fevzi
    Ozdemir, Ozer
    Polat, Gulru
    EUROPEAN RESPIRATORY JOURNAL, 2024, 64
  • [7] Computer assisted cancer diagnosis from PET-CT using dynamic threshold adjustment method
    Sato, Takako
    Kimura, Haruomi
    Arisawa, Hiroshi
    Okasaki, Momoko
    Minamimoto, Ryogo
    Inoue, Tomio
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [8] Computer assisted diagnosis method of whole body cancer using FDG-pet images
    Tozaki, YT
    Senda, M
    Sakamoto, M
    Sakamoto, S
    Matsumoto, K
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 1085 - 1088
  • [9] Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT
    P. J. Brown
    J. Zhong
    R. Frood
    S. Currie
    A. Gilbert
    A. L. Appelt
    D. Sebag-Montefiore
    A. Scarsbrook
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 2790 - 2799
  • [10] Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT
    Brown, P. J.
    Zhong, J.
    Frood, R.
    Currie, S.
    Gilbert, A.
    Appelt, A. L.
    Sebag-Montefiore, D.
    Scarsbrook, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) : 2790 - 2799