An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images

被引:12
|
作者
Duff, Lisa M. [1 ,2 ]
Scarsbrook, Andrew F. [1 ,3 ]
Ravikumar, Nishant [1 ,4 ]
Frood, Russell [1 ,3 ]
van Praagh, Gijs D. [5 ]
Mackie, Sarah L. [1 ,6 ,7 ]
Bailey, Marc A. [1 ,8 ]
Tarkin, Jason M. [9 ]
Mason, Justin C. [10 ]
van der Geest, Kornelis S. M. [11 ]
Slart, Riemer H. J. A. [5 ]
Morgan, Ann W. [1 ,6 ,7 ]
Tsoumpas, Charalampos [1 ,5 ]
机构
[1] Univ Leeds, Sch Med, Leeds LS2 9JT, England
[2] Univ Leeds, Inst Med & Biol Engn, Leeds LS2 9JT, England
[3] St James Univ Hosp, Dept Radiol, Leeds LS9 7TF, England
[4] Univ Leeds, Ctr Computat Imaging & Simulat Technol Biomed, Leeds LS2 9JT, England
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9713 GZ Groningen, Netherlands
[6] Leeds Teaching Hosp NHS Trust, NIHR Leeds Biomed Res Ctr, Leeds LS7 4SA, England
[7] Leeds Teaching Hosp NHS Trust, NIHR Leeds MedTech & Vitro Diagnost Cooperat, Leeds LS7 4SA, England
[8] Leeds Gen Infirm, Leeds Vasc Inst, Leeds LS2 9NS, England
[9] Univ Cambridge, Div Cardiovasc Med, Cambridge CB2 0QQ, England
[10] Imperial Coll London, Natl Heart & Lung Inst, Dept Biomed Photon Imaging, London SW3 6LY, England
[11] Univ Groningen, Univ Med Ctr Groningen, Dept Rheumatol & Clin Immunol, NL-9713 GZ Groningen, Netherlands
基金
英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
aortitis; radiomics; machine learning; convolutional neural network; positron emission tomography; computed tomography; LARGE-VESSEL VASCULITIS; ASSOCIATION; MANAGEMENT; FEATURES; SOCIETY; AREAS; EANM;
D O I
10.3390/biom13020343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images
    Martinez-Rodriguez, Isabel
    Martinez-Amador, N.
    Banzo, I.
    Quirce, R.
    Jimenez-Bonilla, J.
    De Arcocha-Torres, M.
    Ibanez-Bravo, S.
    Lavado-Perez, C.
    Bravo-Ferrer, Z.
    Blanco, R.
    Gonzalez-Gay, M. A.
    Carril, J. M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (12) : 2319 - 2324
  • [22] Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images
    Isabel Martínez-Rodríguez
    N. Martínez-Amador
    I. Banzo
    R. Quirce
    J. Jiménez-Bonilla
    M. De Arcocha-Torres
    S. Ibáñez-Bravo
    C. Lavado-Pérez
    Z. Bravo-Ferrer
    R. Blanco
    M. A. González-Gay
    J. M. Carril
    European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 : 2319 - 2324
  • [23] Automated Thresholded Region Classification Using a Robust Feature Selection Method for PET-CT
    Bi, Lei
    Kim, Jinman
    Wen, Lingfeng
    Feng, Dagan
    Fulham, Michael
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 1435 - 1438
  • [24] A Semi-Automated Method for Regional Cerebral Uptake Analysis in Micro PET-CT
    Leatherday, Christopher
    Lam, Virginie
    Boucek, Jan
    Celliers, Liesl
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [25] Automated Quantification of Lymphoma On FDG PET/CT Images Using Cascaded Convolutional Neural Networks
    Weisman, A.
    Kieler, M.
    Perlman, S.
    Jeraj, R.
    Hutchings, M.
    Kostakoglu, L.
    Bradshaw, T.
    MEDICAL PHYSICS, 2019, 46 (06) : E463 - E463
  • [26] Improving lymphoma diagnosis, treatment and followup with F18 FDG PET-CT imaging: Contribution of Artificial Intelligence and Radiomics Analysis.
    Hasanabadi, S.
    Aghamiri, S.
    Abin, A.
    Arabi, H.
    Zaidi, H.
    Nejabat, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S571 - S571
  • [27] Evaluation of manual and automated approaches for segmentation and extraction of quantitative indices from [18F]FDG PET-CT images
    Krokos, Georgios
    Kotwal, Tejas
    Malaih, Afnan
    Barrington, Sally
    Jackson, Price
    Hicks, Rodney J.
    Marsden, Paul K.
    Fischer, Barbara Malene
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (02)
  • [28] Automated detection of lung tumors in PET/CT images using active contour filter
    Teramoto, Atsushi
    Adachi, Hayato
    Tsujimoto, Masakazu
    Fujita, Hiroshi
    Takahashi, Katsuaki
    Yamamuro, Osamu
    Tamaki, Tsuneo
    Nishio, Masami
    Kobayashi, Toshiki
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [29] In reply to letter to the editor: radiomic feature analysis of pre-treatment FDG PET-CT for predicting outcome in anal squamous cell carcinoma
    Peter Brown
    Ane Appelt
    David Sebag-Montefiore
    Andrew Scarsbrook
    European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47 : 2735 - 2736
  • [30] In reply to letter to the editor: radiomic feature analysis of pre-treatment FDG PET-CT for predicting outcome in anal squamous cell carcinoma
    Brown, Peter
    Appelt, Ane
    Sebag-Montefiore, David
    Scarsbrook, Andrew
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (12) : 2735 - 2736