A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis

被引:9
|
作者
Duff, Lisa [1 ,2 ]
Scarsbrook, Andrew F. [3 ,4 ]
Mackie, Sarah L. [5 ,6 ]
Frood, Russell [3 ,4 ]
Bailey, Marc [1 ,7 ]
Morgan, Ann W. [1 ,6 ]
Tsoumpas, Charalampos [1 ,8 ,9 ]
机构
[1] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, 8-49b Worsley Bldg,Clarendon Way, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Inst Med & Biol Engn, Leeds, W Yorkshire, England
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Leeds, W Yorkshire, England
[4] St James Univ Hosp, Dept Radiol, Leeds, W Yorkshire, England
[5] Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England
[6] Leeds Teaching Hosp NHS Trust, Biomed Res Ctr, NIHR Leeds, Leeds, W Yorkshire, England
[7] Leeds Gen Infirm, Leeds Vasc Inst, Leeds, W Yorkshire, England
[8] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst, New York, NY 10029 USA
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
关键词
Large-vessel vasculitis; FDG PET; CT; Radiomic feature analysis; Diagnosis; Giant cell arteritis; LARGE-VESSEL VASCULITIS; GIANT-CELL ARTERITIS; POLYMYALGIA-RHEUMATICA; F-18-FDG PET; EANM; COHORT;
D O I
10.1007/s12350-022-02927-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [F-18]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. Methods The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. Results Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. Conclusion A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
引用
收藏
页码:3315 / 3331
页数:17
相关论文
共 50 条
  • [41] Prediction of complete pathological response after neoadjuvant chemotherapy in breast cancer using texture analysis: comparison of FDG PET-CT and DCE-MRI
    Boughdad, Sarah
    Dirand, Anne-Sophie
    Orlhac, Fanny
    Nioche, Christophe
    Champion, Laurence
    Buvat, Irene
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [42] Prognostic Value of Radiomic Analysis Using Pre- and Post-Treatment 18F-FDG-PET/CT in Patients with Laryngeal Cancer and Hypopharyngeal Cancer
    Choi, Joon Ho
    Choi, Joon Young
    Woo, Sang-Keun
    Moon, Ji Eun
    Lim, Chae Hong
    Park, Soo Bin
    Seo, Seongho
    Ahn, Yong Chan
    Ahn, Myung-Ju
    Moon, Seung Hwan
    Park, Jung Mi
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (01):
  • [43] A structural and metabolic framework for classifying pre-clinical tuberculosis infection phenotypes using 18F-FDG PET-CT: a prospective cohort analysis following M. tuberculosis exposure
    Kim, Jee Whang
    Vadera, Sonam
    Sharifpour, Meedya
    Bajaj, Amrita
    Kamil, Anver
    Haldar, Pranabashis
    THORAX, 2024, 79 (12) : 1156 - 1159
  • [44] The value of FDG-PET/CT by using 3-dimensional stereotactic surface projection software analysis in the differential diagnosis of dementia
    Arslan, Esra
    Ekmekcioglu, Ozgul
    Gortran, Fatma Arzu
    Engin Akcan, Zeynep Funda
    Erkan, Melih Engin
    Emul, Haci Murat
    Halac, Metin
    Cermik, Tevfik Fikret
    Sonmezoglu, Kerim
    TURKISH JOURNAL OF MEDICAL SCIENCES, 2015, 45 (05) : 1149 - 1158
  • [45] Non invasive quantification of cerebral metabolism rate of glucose using dynamic 18F-FDG PET-CT and Patlak analysis in patients with brain tumor
    Calcagni, M. L.
    Leccisotti, L.
    Indovina, L.
    Lavalle, M.
    Nucci, C.
    Mangiola, A.
    Anile, C.
    Galli, G.
    Giordano, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2009, 36 : S326 - S326
  • [46] Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict for recurrence and suvival in cervical cancer
    Leisser, Asha
    Grahovac, Marko
    Papp, Laszlo
    Nakuz, Thomas
    Hacker, Marcus
    Beyer, Thomas
    Nejabat, Marzieh
    Haug, Alexander
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [47] Analysis of the solitary pulmonary nodule after surgical resection in patients using 18F-FDG integrated PET-CT scan at preoperative work-up
    Francisco Honguero-Martinez, Antonio
    Del Rosario Nunez-Ares, Ana Maria
    Dolores Garcia-Jimenez, Maria
    Patricia Lopez-Miguel, Concepcion
    Godoy-Mayoral, Raul
    Genoves-Crespo, Marta
    Garcia-Vicente, Ana
    Rodriguez-Ortega, Claudia-Rossana
    Andres-Petrel, Fernando
    Almonte-Garcia, Carlos-Eduardo
    Callejas-Gonzalez, Francisco-Javier
    Jimenez-Lopez, Jesus
    Leon-Atance, Pablo
    Lazaro-Sahuquillo, M.
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [48] AI-assisted high-dimensional cytological single cell analysis distinguishes normal and malignant urine samples using cell morphology images with high accuracy at the single cell level
    van den Bosch, Thierry P.
    van Leenders, Geert J. L. H.
    Sinnadurai, Siamala
    Lian, Zhouyang
    Carelli, Ryan
    Nakaki, Matthew
    Lu, Vivian
    Ray, Manisha
    Cruz, Janifer
    Miller, Kelly R.
    Salek, Mahyar
    Masaeli, Maddison
    van der Spek, Peter J.
    CANCER RESEARCH, 2024, 84 (06)
  • [49] Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis
    Hasanabadi, Setareh
    Aghamiri, Seyed Mahmud Reza
    Abin, Ahmad Ali
    Abdollahi, Hamid
    Arabi, Hossein
    Zaidi, Habib
    CANCERS, 2024, 16 (20)
  • [50] Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent ENT tumors
    Leisser, A.
    Papp, L.
    Grahovac, M.
    Hacker, M.
    Beyer, T.
    Nejabat, M.
    Haug, A. R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S200 - S201