A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis

被引:9
|
作者
Duff, Lisa [1 ,2 ]
Scarsbrook, Andrew F. [3 ,4 ]
Mackie, Sarah L. [5 ,6 ]
Frood, Russell [3 ,4 ]
Bailey, Marc [1 ,7 ]
Morgan, Ann W. [1 ,6 ]
Tsoumpas, Charalampos [1 ,8 ,9 ]
机构
[1] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, 8-49b Worsley Bldg,Clarendon Way, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Inst Med & Biol Engn, Leeds, W Yorkshire, England
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Leeds, W Yorkshire, England
[4] St James Univ Hosp, Dept Radiol, Leeds, W Yorkshire, England
[5] Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England
[6] Leeds Teaching Hosp NHS Trust, Biomed Res Ctr, NIHR Leeds, Leeds, W Yorkshire, England
[7] Leeds Gen Infirm, Leeds Vasc Inst, Leeds, W Yorkshire, England
[8] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst, New York, NY 10029 USA
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
关键词
Large-vessel vasculitis; FDG PET; CT; Radiomic feature analysis; Diagnosis; Giant cell arteritis; LARGE-VESSEL VASCULITIS; GIANT-CELL ARTERITIS; POLYMYALGIA-RHEUMATICA; F-18-FDG PET; EANM; COHORT;
D O I
10.1007/s12350-022-02927-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [F-18]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. Methods The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. Results Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. Conclusion A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
引用
收藏
页码:3315 / 3331
页数:17
相关论文
共 50 条
  • [21] Detection and prioritization of COVID-19 infected patients from CXR images: Analysis of AI-assisted diagnosis in clinical settings
    Barbano, Carlo Alberto
    Berton, Luca
    Renzulli, Riccardo
    Tricarico, Davide
    Rampado, Osvaldo
    Basile, Domenico
    Busso, Marco
    Grosso, Marco
    Grangetto, Marco
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 24 : 754 - 761
  • [22] DETERMINATION OF METABOLICALLY ACTIVE-TUMOR VOLUME BY USING SEMIAUTOMATED ANALYSIS AT FDG PET AND COMPARISON WITH CT
    ZASADNY, KR
    KISON, P
    FUONCO, IR
    WAHL, RL
    RADIOLOGY, 1995, 197 : 184 - 184
  • [23] Improving sensitivity through data augmentation with synthetic lymph node metastases for AI-based analysis of PSMA PET-CT images
    Tragardh, Elin
    Ulen, Johannes
    Enqvist, Olof
    Edenbrandt, Lars
    Larsson, Mans
    CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, 2024, 44 (04) : 332 - 339
  • [24] Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients
    Paul Flechsig
    Philipp Frank
    Clemens Kratochwil
    Gerald Antoch
    Daniel Rath
    Jan Moltz
    Michael Rieser
    Arne Warth
    Hans-Ulrich Kauczor
    Lawrence H. Schwartz
    Uwe Haberkorn
    Frederik L. Giesel
    Molecular Imaging and Biology, 2017, 19 : 315 - 322
  • [25] Meta-analysis of diagnosis of liver metastatic cancers: Comparison of 18FDG PET-CT and gadolinium-enhanced MRI
    Deng, Jinlong
    Tang, Jiande
    Shen, Naipeng
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2014, 58 (05) : 532 - 537
  • [26] Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients
    Flechsig, Paul
    Frank, Philipp
    Kratochwil, Clemens
    Antoch, Gerald
    Rath, Daniel
    Moltz, Jan
    Rieser, Michael
    Warth, Arne
    Kauczor, Hans-Ulrich
    Schwartz, Lawrence H.
    Haberkorn, Uwe
    Giesel, Frederik L.
    MOLECULAR IMAGING AND BIOLOGY, 2017, 19 (02) : 315 - 322
  • [27] Feature selection using factor analysis for Alzheimer's diagnosis using 18F-FDG PET images
    Salas-Gonzalez, D.
    Gorriz, J. M.
    Ramirez, J.
    Illan, I. A.
    Lopez, M.
    Segovia, F.
    Chaves, R.
    Padilla, P.
    Puntonet, C. G.
    MEDICAL PHYSICS, 2010, 37 (11) : 6084 - 6095
  • [28] Heterogeneity Studying for Primary and Lymphoma Tumors by Using Multi-Scale Image Texture Analysis with PET-CT Images
    Li, Dengwang
    Wang, Qinfen
    Li, H.
    Chen, J.
    MEDICAL PHYSICS, 2014, 41 (06) : 153 - 154
  • [29] Multiparameter Analysis Using 18F-FDG PET/CT in the Differential Diagnosis of Pancreatic Cystic Neoplasms
    Wang, Guanyun
    Dang, Haodan
    Yu, Peng
    Liu, Honghong
    Wu, Yue
    Yao, Shulin
    Tian, Jiahe
    Ye, Huiyi
    Xu, Baixuan
    CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021
  • [30] Analysis of cost-effectiveness in the diagnosis of fever of unknown origin and the role of 18F-FDG PET-CT: a proposal of diagnostic algorithm
    Becerra Nakayo, E. M.
    Garcia Vicente, A. M.
    Soriano Castrejon, A. M.
    Mendoza Narvaez, J. A.
    Talavera Rubio, M. P.
    Poblete Garcia, V. M.
    Cordero Garcia, J. M.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2012, 31 (04): : 178 - 186