The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions

被引:8
|
作者
Bergeron, Nantel [1 ,2 ]
Sanchez-Ortega, Juana [1 ,2 ,3 ,4 ]
Zabrocki, Mike [1 ,2 ]
机构
[1] Fields Inst Res Math Sci, 222 Coll St,Second Floor, Toronto, ON M5T 3J1, Canada
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[4] Univ Malaga, Dept Algebra Geometry & Topol, E-29071 Malaga, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
non-commutative symmetric functions; quasi-symmetric functions; tableaux; Schur functions; COMBINATORIAL FORMULA; ALGEBRAS;
D O I
10.1007/s00026-016-0303-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The immaculate basis of the non-commutative symmetric functions was recently introduced by the first and third authors to lift certain structures in the symmetric functions to the dual Hopf algebras of the non-commutative and quasi-symmetric functions. It was shown that immaculate basis satisfies a positive, multiplicity free right Pieri rule. It was conjectured that the left Pieri rule may contain signs but that it would be multiplicity free. Similarly, it was also conjectured that the dual quasi-symmetric basis would also satisfy a signed multiplicity free Pieri rule. We prove these two conjectures here.
引用
收藏
页码:283 / 300
页数:18
相关论文
共 50 条
  • [31] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q=0
    Duchamp, G
    Krob, D
    Leclerc, B
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (02): : 107 - 112
  • [32] Shifted quasi-symmetric functions and the Hopf algebra of peak functions
    Bergeron, N
    Mykytiuk, S
    Sottile, F
    van Willigenburg, S
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 57 - 66
  • [33] Hecke algebras, difference operators, and quasi-symmetric functions
    Hivert, F
    ADVANCES IN MATHEMATICS, 2000, 155 (02) : 181 - 238
  • [34] Algebra of operators on the ring of polytopes and quasi-symmetric functions
    Buchstaber, V. M.
    Erokhovets, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (02) : 381 - 383
  • [35] Bidendriform bialgebras, trees, and free quasi-symmetric functions
    Foissy, Loic
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (02) : 439 - 459
  • [36] Inversion of some series of free quasi-symmetric functions
    Hivert, Florent
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 29 - 33
  • [37] Quasi-symmetric functions and up-down compositions
    Fuller, Evan
    Remmel, Jeffrey
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1754 - 1767
  • [38] The algebra of quasi-symmetric functions is free over the integers
    Hazewinkel, M
    ADVANCES IN MATHEMATICS, 2001, 164 (02) : 283 - 300
  • [39] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576
  • [40] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Frédéric Toumazet
    Annals of Combinatorics, 2020, 24 : 557 - 576