The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions

被引:8
|
作者
Bergeron, Nantel [1 ,2 ]
Sanchez-Ortega, Juana [1 ,2 ,3 ,4 ]
Zabrocki, Mike [1 ,2 ]
机构
[1] Fields Inst Res Math Sci, 222 Coll St,Second Floor, Toronto, ON M5T 3J1, Canada
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[4] Univ Malaga, Dept Algebra Geometry & Topol, E-29071 Malaga, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
non-commutative symmetric functions; quasi-symmetric functions; tableaux; Schur functions; COMBINATORIAL FORMULA; ALGEBRAS;
D O I
10.1007/s00026-016-0303-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The immaculate basis of the non-commutative symmetric functions was recently introduced by the first and third authors to lift certain structures in the symmetric functions to the dual Hopf algebras of the non-commutative and quasi-symmetric functions. It was shown that immaculate basis satisfies a positive, multiplicity free right Pieri rule. It was conjectured that the left Pieri rule may contain signs but that it would be multiplicity free. Similarly, it was also conjectured that the dual quasi-symmetric basis would also satisfy a signed multiplicity free Pieri rule. We prove these two conjectures here.
引用
收藏
页码:283 / 300
页数:18
相关论文
共 50 条
  • [21] ON MAXIMAL AND MINIMAL QUASI-SYMMETRIC FUNCTIONS ON AN INTERVAL
    LEHTINEN, M
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (01): : 77 - 83
  • [22] An overview of Λ-type operations on quasi-symmetric functions
    Bertet, K
    Krob, D
    Morvan, M
    Novelli, JC
    Phan, HD
    Thibon, JY
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 4277 - 4303
  • [23] Binary shuffle bases for quasi-symmetric functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    The Ramanujan Journal, 2016, 40 : 207 - 225
  • [24] ASYMPTOTIC EXTREMAL GROWTH OF QUASI-SYMMETRIC FUNCTIONS
    HINKKANEN, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1986, 11 (02): : 295 - 319
  • [25] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, J.-Y.
    Ung, B.-C.-V.
    Journal of Physics A: Mathematical and General, 29 (22):
  • [26] Ideals and quotients of diagonally quasi-symmetric functions
    Li, Shu Xiao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [27] Binary shuffle bases for quasi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    RAMANUJAN JOURNAL, 2016, 40 (01): : 207 - 225
  • [28] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, JY
    Ung, BCV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7337 - 7348
  • [29] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q = 0
    Duchamp, G.
    Krob, D.
    Leclerc, B.
    Thibon, J.-Y.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 322 (02):
  • [30] Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras
    Duchamp, G
    Hivert, F
    Thibon, JY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) : 671 - 717