High Temperature Oxidation of the Austenitic (35Fe27Cr31Ni) Alloy Sanicro 28 in O2 + H2O Environment

被引:16
|
作者
Pettersson, C. [1 ]
Jonsson, T. [2 ]
Proff, C. [2 ]
Halvarsson, M. [2 ]
Svensson, J-E. [1 ]
Johansson, L-G. [1 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Biol Engn, High Temp Corros Ctr, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Appl Phys, S-41296 Gothenburg, Sweden
来源
OXIDATION OF METALS | 2010年 / 74卷 / 1-2期
关键词
Oxidation; Sanicro; 28; Water vapor; Evaporation; WATER-VAPOR; CHROMIUM; OXIDES; 304L;
D O I
10.1007/s11085-010-9199-1
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present study investigates the high temperature oxidation of alloy Sanicro 28 (35Fe27Cr31Ni) in 5% O-2 and in 5% O-2 + 40% H2O. Polished steel coupons were isothermally exposed in a tube furnace at 600, 700 and 800 A degrees C for up to 168 h. The samples were investigated by gravimetry, grazing angle X-ray diffraction (XRD), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy/energy dispersive X-rays (STEM/EDX). The results show that the material forms a protective scale in both environments. The scale is duplex. The inner part of the scale consists of corundum type chromium-rich (Cr (x) Fe1-x )(2)O-3, and the outer layer consists of spinel type oxide. Chromia is lost from the protective oxide by vaporization of CrO2(OH)(2) in O-2 + H2O environment. The capacity of Sanicro 28 to suffer chromia vaporization without forming a rapidly growing iron-rich oxide is attributed to its high Cr/Fe ratio. The spinel formed at the oxide/gas interface could in addition be beneficial for oxidation behavior in wet oxygen because it may slow down chromia evaporation.
引用
收藏
页码:93 / 111
页数:19
相关论文
共 50 条
  • [21] Role of H2O in oxidation of spent high-temperature desulfurization sorbent Fe2O3 and CuO in the presence of O2
    Sasaoka, E
    Hatori, M
    Yoshimura, H
    Su, C
    Uddin, MA
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (11) : 2512 - 2517
  • [22] Interaction of H2O and O2 with Ni3Fe and their effects on ductility
    Wang, J
    Chia, WJ
    Chung, YW
    Liu, CT
    INTERMETALLICS, 2000, 8 (04) : 353 - 357
  • [23] Paralinear Oxidation of Chromium in O2 + H2O Environment at 600–700 °C
    Bagas Pujilaksono
    Torbjörn Jonsson
    Mats Halvarsson
    Itai Panas
    Jan-Erik Svensson
    Lars-Gunnar Johansson
    Oxidation of Metals, 2008, 70 : 163 - 188
  • [24] OXIDATION OF IRON BY O2, H2O, AND AN O2-H2O MIXTURE
    TURNER, NH
    COLTON, RJ
    MURDAY, JS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1981, 18 (02): : 593 - 594
  • [25] The low temperature oxidation of lithium thin films on HOPG by O2 and H2O
    Wulfsberg, Steven M.
    Koel, Bruce E.
    Bernasek, Steven L.
    SURFACE SCIENCE, 2016, 651 : 120 - 127
  • [26] Investigation of the high-temperature oxidation behavior of Fe-14Cr-9Mn-2.5Ni austenitic stainless steel in N2-21 vol%O2 environment
    Su, Minghua
    Zhao, Jianhua
    Gu, Cheng
    CORROSION SCIENCE, 2023, 220
  • [27] Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels
    Huenert, D.
    Kranzmann, A.
    CORROSION SCIENCE, 2011, 53 (06) : 2306 - 2317
  • [28] Oxidation study of a polycrystalline Ni/Cr alloy I:: room-temperature exposure to O2
    Hoflund, GB
    Epling, WS
    THIN SOLID FILMS, 1997, 307 (1-2) : 126 - 132
  • [29] Phase Composition of the Products of Fe Oxidation in Fe + C + NaCl + H2O + O2 Exothermic Mixtures
    I. Z. Babievskaya
    N. F. Drobot
    K. S. Gavrichev
    O. A. Noskova
    V. A. Krenev
    S. V. Korostin
    Yu. V. Permyakov
    Inorganic Materials, 2002, 38 : 586 - 596
  • [30] Theoretical studies of large water clusters: (H2O)(28), (H2O)(29), (H2O)(30), and (H2O)(31) hexakaidecahedral structures
    Khan, A
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (13): : 5537 - 5540