A High Accuracy Spectral Element Method for Solving Eigenvalue Problems

被引:0
|
作者
Shan, Weikun [1 ]
Li, Huiyuan [2 ]
机构
[1] Univ Chinese Acad Sci, Inst Software, Chinese Acad Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
关键词
triangular spectral element method; eigenvalue problem; Koornwinder polynomials; spectral" accuracy; GALERKIN METHODS;
D O I
10.1109/DCABES.2015.124
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A triangular spectral element method is proposed and analyzed for the Laplacian eigenvalue problem. The method is based on the Galerkin approximation with generalized Koornwinder polynomials. We detailedly describe the approximation scheme and implementation for solving the Laplacian eigenvalue problem. Numerical experiments also indicate that the triangular spectral element method for solving the eigenvalue problems on convex domain has the "spectral" accuracy, that is, exponential convergence rate.
引用
收藏
页码:472 / 476
页数:5
相关论文
共 50 条
  • [21] ITERATION METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS
    DEMOULIN, YMJ
    CHEN, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) : 588 - 595
  • [22] THE PSEUDOSPECTRAL METHOD FOR SOLVING DIFFERENTIAL EIGENVALUE PROBLEMS
    HUANG, WZ
    SLOAN, DM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) : 399 - 409
  • [23] A numerical method for solving inverse eigenvalue problems
    Dai, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 1999, 33 (05) : 1003 - 1017
  • [24] Spectral element approximation of Fredholm integral eigenvalue problems
    Oliveira, Saulo P.
    Azevedo, Juarez S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 46 - 56
  • [25] Nonlinear eigenvalue analysis for spectral element method
    Mukherjee, Avisek
    Sarkar, Soumyadipta
    Banerjee, Arnab
    COMPUTERS & STRUCTURES, 2021, 242
  • [26] The Spectral Element Method for the Steklov Eigenvalue Problem
    Li, Yanjun
    Yang, Yidu
    Bi, Hai
    MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING, 2014, 853 : 631 - 635
  • [27] Least squares h-p spectral element method for elliptic eigenvalue problems
    Balyan, Lokendra K.
    Dutt, Pravir K.
    Rathore, R. K. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9596 - 9613
  • [28] SUPER-GEOMETRIC CONVERGENCE OF A SPECTRAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH JUMP COEFFICIENTS
    Wang, Lin
    Xie, Ziqing
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (03) : 418 - 428
  • [29] SUPER-GEOMETRIC CONVERGENCE OF A SPECTRAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH JUMP COEFFICIENTS
    Lin Wang College of Mathematics and Computer Science
    Journal of Computational Mathematics, 2010, 28 (03) : 418 - 428
  • [30] High accuracy method for solving N-body problems
    Ishibashi, N
    Miyagawa, A
    DYNAMICS OF STAR CLUSTERS AND THE MILKY WAY, 2001, 228 : 458 - 460