A High Accuracy Spectral Element Method for Solving Eigenvalue Problems

被引:0
|
作者
Shan, Weikun [1 ]
Li, Huiyuan [2 ]
机构
[1] Univ Chinese Acad Sci, Inst Software, Chinese Acad Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
关键词
triangular spectral element method; eigenvalue problem; Koornwinder polynomials; spectral" accuracy; GALERKIN METHODS;
D O I
10.1109/DCABES.2015.124
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A triangular spectral element method is proposed and analyzed for the Laplacian eigenvalue problem. The method is based on the Galerkin approximation with generalized Koornwinder polynomials. We detailedly describe the approximation scheme and implementation for solving the Laplacian eigenvalue problem. Numerical experiments also indicate that the triangular spectral element method for solving the eigenvalue problems on convex domain has the "spectral" accuracy, that is, exponential convergence rate.
引用
收藏
页码:472 / 476
页数:5
相关论文
共 50 条
  • [41] A new method for solving Pareto eigenvalue complementarity problems
    Samir Adly
    Hadia Rammal
    Computational Optimization and Applications, 2013, 55 : 703 - 731
  • [42] SPECTRAL ELEMENT METHODS FOR EIGENVALUE PROBLEMS BASED ON DOMAIN DECOMPOSITION
    Wang, W. E., I
    Zhang, Zhimin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A689 - A719
  • [43] High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element
    Lin, Q
    Wu, DS
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1999, 15 (01): : 19 - 31
  • [44] A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems
    Imakura, Akira
    Du, Lei
    Sakurai, Tetsuya
    APPLIED MATHEMATICS LETTERS, 2014, 32 : 22 - 27
  • [45] Efficient Spectral-Galerkin Method for eigenvalue problems
    Jun, Zhang
    Fan Xinyue
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 102 - 106
  • [46] Immersed Finite Element Method for Eigenvalue Problems in Elasticity
    Lee, Seungwoo
    Kwak, Do Young
    Sim, Imbo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) : 424 - 444
  • [47] Quadrature finite element method for elliptic eigenvalue problems
    Solov’ev S.I.
    Lobachevskii Journal of Mathematics, 2017, 38 (5) : 856 - 863
  • [48] On the differential transform method of solving boundary eigenvalue problems: An illustration
    Narayana, M.
    Shekar, M.
    Siddheshwar, P. G.
    Anuraj, N., V
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (05):
  • [49] Solving acoustic nonlinear eigenvalue problems with a contour integral method
    Leblanc, Alexandre
    Lavie, Antoine
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (01) : 162 - 166
  • [50] A novel method for solving second order fractional eigenvalue problems
    Reutskiy, S. Yu.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 306 : 133 - 153