Spectral element approximation of Fredholm integral eigenvalue problems

被引:19
|
作者
Oliveira, Saulo P. [1 ]
Azevedo, Juarez S. [2 ]
机构
[1] Univ Fed Parana, Dept Matemat, BR-81531980 Curitiba, Parana, Brazil
[2] CETEC UFRB, BR-44380000 Cruz Das Almas, BA, Brazil
关键词
Spectral element method; Fredholm integral of second kind; Karhunen-Loeve expansion; STATISTICAL MOMENTS; COMPUTATION; STABILITY; MEDIA;
D O I
10.1016/j.cam.2013.08.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of homogeneous Fredholm integral equations of second kind, with emphasis on computing truncated Karhunen-Loeve expansions. We employ the spectral element method with Gauss-Lobatto-Legendre (GLL) collocation points. Similar to the piecewise-constant finite elements, this approach is simple to implement and does not lead to generalized discrete eigenvalue problems. Numerical experiments confirm the expected convergence rates for some classical kernels and illustrate how this approach can improve the finite element solution of partial differential equations with random input data. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条