Learning-Assisted Multimodality Dielectric Imaging

被引:48
|
作者
Chen, Guanbo [1 ]
Shah, Pratik [2 ]
Stang, John [3 ]
Moghaddam, Mahta [3 ]
机构
[1] Samsung Res Amer, Plano, TX 75023 USA
[2] Acutus Med Inc, Carlsbad, CA 92008 USA
[3] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Convolutional neural network (CNN); dielectric imaging; inverse scattering; microwave imaging; multimodality imaging; CONVOLUTIONAL NEURAL-NETWORK; MICROWAVE TOMOGRAPHY; BIOLOGICAL TISSUES; BREAST; RECONSTRUCTION; INFORMATION; CHALLENGES;
D O I
10.1109/TAP.2019.2948565
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a convolutional neural network (CNN)-assisted dielectric imaging method, which uses CNN to incorporate the abundant image information from magnetic resonance (MR) images into the model- based microwave inverse scattering imaging process and generate high-fidelity dielectric images. A CNN is designed and trained to learn the complex mapping function from MR T1 images to dielectric images. Once trained, the new patients' MR T1 images are fed into the CNN to generate predicted dielectric images, which are used as the starting image for the microwave inverse scattering imaging. The CNN-predicted dielectric image, containing abundant prior information from MR images, significantly reduces the non-linearity and ill-posedness of the inverse scattering problem. We demonstrate the application of the proposed method to recover human brain dielectric images at 4 and 2 mm resolution with single- frequency and multifrequency microwave measurements. The reconstructed brain dielectric images with the proposed method show significant improvements in image quality compared with images reconstructed with no assistance from MR and CNN.
引用
收藏
页码:2356 / 2369
页数:14
相关论文
共 50 条
  • [21] Machine learning-assisted colloidal synthesis: A review
    Gulevich, D. G.
    Nabiev, I. R.
    Samokhvalov, P. S.
    [J]. MATERIALS TODAY CHEMISTRY, 2024, 35
  • [22] Deep learning-assisted light sheet holography
    Asoudegi, Nima
    Dorrah, Ahmed h.
    Mojahedi, Mo
    [J]. OPTICS EXPRESS, 2024, 32 (02) : 1161 - 1175
  • [23] Machine learning-assisted crystal engineering of a zeolite
    Xinyu Li
    He Han
    Nikolaos Evangelou
    Noah J. Wichrowski
    Peng Lu
    Wenqian Xu
    Son-Jong Hwang
    Wenyang Zhao
    Chunshan Song
    Xinwen Guo
    Aditya Bhan
    Ioannis G. Kevrekidis
    Michael Tsapatsis
    [J]. Nature Communications, 14
  • [24] Machine Learning-assisted Management of a Virtualized Network
    Hayashi, Michiaki
    [J]. 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,
  • [25] Deep Learning-Assisted Video Compression Framework
    Man, Hengyu
    Yu, Chang
    Xing, Feng
    Cheng, Yang
    Zheng, Bo
    Fan, Xiaopeng
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3210 - 3214
  • [26] Machine learning-assisted smart epitaxy of Ⅲ-Ⅴ semiconductors
    Yue Hao
    [J]. Science China(Materials)., 2024, 67 (09) - 3042
  • [27] Visualizing Uncertainty in Machine Learning-Assisted Measurements
    Shirmohammadi, Shervin
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (07) : 20 - 27
  • [28] Deep learning-assisted Hubble parameter analysis
    Salti, Mehmet
    Kangal, Evrim Ersin
    Zengin, Bilgin
    [J]. MODERN PHYSICS LETTERS A, 2024, 39 (04)
  • [29] Learning-assisted multi-step planning
    Hauser, K
    Bretl, T
    Latombe, JC
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 4575 - 4580
  • [30] Review of learning-assisted power system optimization
    Ruan, Guangchun
    Zhong, Haiwang
    Zhang, Guanglun
    He, Yiliu
    Wang, Xuan
    Pu, Tianjiao
    [J]. CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2021, 7 (02): : 221 - 231