Learning-Assisted Multimodality Dielectric Imaging

被引:48
|
作者
Chen, Guanbo [1 ]
Shah, Pratik [2 ]
Stang, John [3 ]
Moghaddam, Mahta [3 ]
机构
[1] Samsung Res Amer, Plano, TX 75023 USA
[2] Acutus Med Inc, Carlsbad, CA 92008 USA
[3] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Convolutional neural network (CNN); dielectric imaging; inverse scattering; microwave imaging; multimodality imaging; CONVOLUTIONAL NEURAL-NETWORK; MICROWAVE TOMOGRAPHY; BIOLOGICAL TISSUES; BREAST; RECONSTRUCTION; INFORMATION; CHALLENGES;
D O I
10.1109/TAP.2019.2948565
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a convolutional neural network (CNN)-assisted dielectric imaging method, which uses CNN to incorporate the abundant image information from magnetic resonance (MR) images into the model- based microwave inverse scattering imaging process and generate high-fidelity dielectric images. A CNN is designed and trained to learn the complex mapping function from MR T1 images to dielectric images. Once trained, the new patients' MR T1 images are fed into the CNN to generate predicted dielectric images, which are used as the starting image for the microwave inverse scattering imaging. The CNN-predicted dielectric image, containing abundant prior information from MR images, significantly reduces the non-linearity and ill-posedness of the inverse scattering problem. We demonstrate the application of the proposed method to recover human brain dielectric images at 4 and 2 mm resolution with single- frequency and multifrequency microwave measurements. The reconstructed brain dielectric images with the proposed method show significant improvements in image quality compared with images reconstructed with no assistance from MR and CNN.
引用
收藏
页码:2356 / 2369
页数:14
相关论文
共 50 条
  • [41] Machine learning-assisted discovery of flow reactor designs
    Tom Savage
    Nausheen Basha
    Jonathan McDonough
    James Krassowski
    Omar Matar
    Ehecatl Antonio del Rio Chanona
    [J]. Nature Chemical Engineering, 2024, 1 (8): : 522 - 531
  • [42] Learning-assisted Beam Search for Indoor mmWave Networks
    Chen, Yu-Jia
    Cheng, Wei-Yuan
    Wang, Li-Chun
    [J]. 2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2018, : 320 - 325
  • [43] Interpretable machine learning-assisted screening of perovskite oxides
    Zhao, Jie
    Wang, Xiaoyan
    Li, Haobo
    Xu, Xiaoyong
    [J]. RSC ADVANCES, 2024, 14 (06) : 3909 - 3922
  • [44] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    [J]. 2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [45] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [46] A Dynamic Opposite Learning-Assisted Grey Wolf Optimizer
    Wang, Yang
    Jin, Chengyu
    Li, Qiang
    Hu, Tianyu
    Xu, Yunlang
    Chen, Chao
    Zhang, Yuqian
    Yang, Zhile
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [47] Deep learning-assisted segmentation of bubble image shadowgraph
    Binqi Chen
    Michael Chukwuemeka Ekwonu
    Shujun Zhang
    [J]. Journal of Visualization, 2022, 25 : 1125 - 1136
  • [48] Interactive Transfer Learning-Assisted Fuzzy Neural Network
    Han, Honggui
    Liu, Hongxu
    Liu, Zheng
    Qiao, Junfei
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1900 - 1913
  • [49] Machine Learning-Assisted Decision Making in Orthopaedic Oncology
    Rizk, Paul A.
    Gonzalez, Marcos R.
    Galoaa, Bishoy M.
    Girgis, Andrew G.
    Van Der Linden, Lotte
    Chang, Connie Y.
    Lozano-Calderon, Santiago A.
    [J]. JBJS REVIEWS, 2024, 12 (07)
  • [50] Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey
    Wang, Jiangtao
    Wang, Yasha
    Zhang, Daqing
    Goncalves, Jorge
    Ferreira, Denzil
    Visuri, Aku
    Ma, Sen
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (01) : 15 - 22