Deep learning-assisted Hubble parameter analysis

被引:0
|
作者
Salti, Mehmet [1 ,2 ]
Kangal, Evrim Ersin [3 ]
Zengin, Bilgin [4 ,5 ]
机构
[1] Mersin Univ, Wisnet Technol Inc, Technoscope Technol Dev Zone, Ciftlikkoy Campus, Mersin, Turkiye
[2] Mersin Univ, Grad Sch Social Sci, Dept Business Informat Management, TR-33343 Mersin, Turkiye
[3] Mersin Univ, Sch Appl Technol & Management Erdemli, Comp Technol & Informat Syst, TR-33740 Mersin, Turkiye
[4] Munzur Univ, Fac Engn, Dept Elect & Elect Engn, TR-62000 Tunceli, Turkiye
[5] Munzur Univ, Grad Sch, Dept Computat Sci & Engn, TR-62000 Tunceli, Turkiye
关键词
Cosmology; Hubble parameter; artificial intelligence; deep learning; DYNAMICAL MASS MEASUREMENTS; MACHINE; UNIVERSE; SUPERNOVAE; MODEL; GAS; BIG;
D O I
10.1142/S0217732323502024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We turn our attention on evaluating the most recent Hubble parameter data measured via the differential evolution of cosmic-chronometers from a deep learning perspective. To achieve this goal, we start our investigation by introducing the selected theoretical setup and compiling the most recent statistical data obtained in cosmology experiments. Then we implement a tuned version of the long-short term memory (LSTM) architecture and run it to predict possible values of the Cosmic Hubble parameter for different red-shift states. Since we observe a good correlation between the observed and predicted datasets of the Hubble parameter, we conclude that the machine learning approaches can play important roles in the future cosmology investigations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep learning-assisted analysis of automobiles handling performances
    Sapienza, Davide
    Paganelli, Davide
    Prato, Marco
    Bertogna, Marko
    Spallanzani, Matteo
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2022, 13 (01) : 78 - 95
  • [2] Deep learning approach to Hubble parameter
    Tilaver, H.
    Salti, M.
    Aydogdu, O.
    Kangal, E. E.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2021, 261
  • [3] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Takuya Maekawa
    Kazuya Ohara
    Yizhe Zhang
    Matasaburo Fukutomi
    Sakiko Matsumoto
    Kentarou Matsumura
    Hisashi Shidara
    Shuhei J. Yamazaki
    Ryusuke Fujisawa
    Kaoru Ide
    Naohisa Nagaya
    Koji Yamazaki
    Shinsuke Koike
    Takahisa Miyatake
    Koutarou D. Kimura
    Hiroto Ogawa
    Susumu Takahashi
    Ken Yoda
    [J]. Nature Communications, 11
  • [4] Deep learning-assisted analysis of HRTEM images of crystalline nanoparticles
    Zhu, Xiaoyang
    Mao, Yu
    Liu, Jizi
    Chen, Yi
    Chen, Chuan
    Li, Yan
    Huang, Xiao
    Gu, Ning
    [J]. NANOSCALE, 2023, 15 (35) : 14496 - 14504
  • [5] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Maekawa, Takuya
    Ohara, Kazuya
    Zhang, Yizhe
    Fukutomi, Matasaburo
    Matsumoto, Sakiko
    Matsumura, Kentarou
    Shidara, Hisashi
    Yamazaki, Shuhei J.
    Fujisawa, Ryusuke
    Ide, Kaoru
    Nagaya, Naohisa
    Yamazaki, Koji
    Koike, Shinsuke
    Miyatake, Takahisa
    Kimura, Koutarou D.
    Ogawa, Hiroto
    Takahashi, Susumu
    Yoda, Ken
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Deep Learning-Assisted Gait Parameter Assessment for Neurodegenerative Diseases: Model Development and Validation
    Jing, Yu
    Qin, Peinuan
    Fan, Xiangmin
    Qiang, Wei
    Zhu, Wencheng
    Sun, Wei
    Tian, Feng
    Wang, Dakuo
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [7] Deep learning-assisted light sheet holography
    Asoudegi, Nima
    Dorrah, Ahmed h.
    Mojahedi, Mo
    [J]. OPTICS EXPRESS, 2024, 32 (02) : 1161 - 1175
  • [8] Deep Learning-Assisted Video Compression Framework
    Man, Hengyu
    Yu, Chang
    Xing, Feng
    Cheng, Yang
    Zheng, Bo
    Fan, Xiaopeng
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3210 - 3214
  • [9] Deep learning-assisted phase equilibrium analysis for producing natural hydrogen
    Zhang, Tao
    Zhang, Yanhui
    Katterbauer, Klemens
    Al Shehri, Abdallah
    Sun, Shuyu
    Hoteit, Ibrahim
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 473 - 486
  • [10] Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis
    Jamali, Vida
    Hargus, Cory
    Ben-Moshe, Assaf
    Aghazadeh, Amirali
    Hyun Dong Ha
    Mandadapu, Kranthi K.
    Alivisatos, A. Paul
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)