Optical cryptanalysis: Metrics of robustness and cost functions

被引:1
|
作者
Lingel, Christian [1 ,2 ,3 ]
Sheridan, John T. [1 ,2 ,3 ]
机构
[1] Univ Coll Dublin, Coll Engn Math & Phys Sci, Sch Elect Elect & Mech Engn, Dublin 4, Ireland
[2] Univ Coll Dublin, Commun & Optoelect Res Ctr, Dublin 4, Ireland
[3] Univ Coll Dublin, SFI Strateg Res Cluster Solar Energy Convers, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Encryption; Decryption; Double random phase encryption; Optical signal processing; Numerical analysis; FRACTIONAL FOURIER-TRANSFORM; RANDOM-PHASE; IMAGE ENCRYPTION; RETRIEVAL; SYSTEM; KEY; PLANE;
D O I
10.1016/j.optlaseng.2011.05.009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The robustness of optical encryption systems is often quantified by plotting the normalised root mean square (NRMS) error against a particular error in the decryption process, i.e., misalignment of, or pixel errors in the decryption key. In addition, the NRMS appears as a cost function in heuristic iterative attacking techniques, employed to crack optical encryption systems. In fact several other potential measures can be used to quantify the error of a decryption process, for example the lambda parameter, entropy and different auto-focus (image sharpness) based values, i.e., the sum modulus difference and the focus value. Based on detailed numerical simulations, it is shown that in comparison to these other metrics the NRMS provides the best results when attacking an optical encryption system. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 50 条
  • [41] Robustness of Minimum Cost Arborescences
    Kamiyama, Naoyuki
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 130 - 139
  • [42] Robustness via Lyapunov functions
    Barreira, Luis
    Valls, Claudia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) : 2891 - 2907
  • [43] Estimating functions: Nonparametrics and robustness
    Sen, PK
    SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 417 - 435
  • [44] Robustness of radial basis functions
    Eickhoff, Ralf
    Rueckert, Ulrich
    NEUROCOMPUTING, 2007, 70 (16-18) : 2758 - 2767
  • [45] Robustness of radial basis functions
    Eickhoff, R
    Rückert, U
    COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 264 - 271
  • [46] Robustness and Sensitivity Metrics for Tuning the Extended Kalman Filter
    Saha, Manika
    Ghosh, Ratna
    Goswami, Bhaswati
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (04) : 964 - 971
  • [47] Strategy for cryptanalysis of optical encryption in the Fresnel domain
    Situ, Guohai
    Pedrini, Giancarlo
    Osten, Wolfgang
    APPLIED OPTICS, 2010, 49 (03) : 457 - 462
  • [48] Quantum cryptanalysis of hash and claw-free functions
    Brassard, G
    Hoyer, P
    Tapp, A
    LATIN '98: THEORETICAL INFORMATICS, 1998, 1380 : 163 - 169
  • [49] BMNR: Design and Implementation a Benchmark for Metrics of Network Robustness
    Zheng, Jianbing
    Li, Yanbin
    Hou, Yanji
    Gao, Ming
    Zhou, Aoying
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 320 - 325
  • [50] A Comparison of Robustness Metrics for Scheduling DAGs on Heterogeneous Systems
    Canon, Louis-Claude
    Jeannot, Emmanuel
    2007 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2007, : 558 - 567