Optical cryptanalysis: Metrics of robustness and cost functions

被引:1
|
作者
Lingel, Christian [1 ,2 ,3 ]
Sheridan, John T. [1 ,2 ,3 ]
机构
[1] Univ Coll Dublin, Coll Engn Math & Phys Sci, Sch Elect Elect & Mech Engn, Dublin 4, Ireland
[2] Univ Coll Dublin, Commun & Optoelect Res Ctr, Dublin 4, Ireland
[3] Univ Coll Dublin, SFI Strateg Res Cluster Solar Energy Convers, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Encryption; Decryption; Double random phase encryption; Optical signal processing; Numerical analysis; FRACTIONAL FOURIER-TRANSFORM; RANDOM-PHASE; IMAGE ENCRYPTION; RETRIEVAL; SYSTEM; KEY; PLANE;
D O I
10.1016/j.optlaseng.2011.05.009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The robustness of optical encryption systems is often quantified by plotting the normalised root mean square (NRMS) error against a particular error in the decryption process, i.e., misalignment of, or pixel errors in the decryption key. In addition, the NRMS appears as a cost function in heuristic iterative attacking techniques, employed to crack optical encryption systems. In fact several other potential measures can be used to quantify the error of a decryption process, for example the lambda parameter, entropy and different auto-focus (image sharpness) based values, i.e., the sum modulus difference and the focus value. Based on detailed numerical simulations, it is shown that in comparison to these other metrics the NRMS provides the best results when attacking an optical encryption system. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 50 条
  • [21] Cryptanalysis of Strong Physically Unclonable Functions
    Kraleva, Liliya
    Mahzoun, Mohammad
    Posteuca, Raluca
    Toprakhisar, Dilara
    Ashur, Tomer
    Verbauwhede, Ingrid
    IEEE OPEN JOURNAL OF THE SOLID-STATE CIRCUITS SOCIETY, 2023, 3 : 32 - 40
  • [22] Improving the Robustness of JPEG Steganography With Robustness Cost
    Zhang, Jimin
    Zhao, Xianfeng
    He, Xiaolei
    Zhang, Hong
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 164 - 168
  • [23] Robustness of cellular functions
    Stelling, J
    Sauer, U
    Szallasi, Z
    Doyle, FJ
    Doyle, J
    CELL, 2004, 118 (06) : 675 - 685
  • [24] Surrogating circuit design solutions with robustness metrics
    Sun, Jin
    Xiao, Liang
    Tian, Jiangshan
    Zhou, He
    Roveda, Janet
    INTEGRATION-THE VLSI JOURNAL, 2016, 52 : 1 - 9
  • [25] Full Cryptanalysis of LPS and Morgenstern Hash Functions
    Petit, Christophe
    Lauter, Kristin
    Quisquater, Jean-Jacques
    SECURITY AND CRYPTOGRAPHY FOR NETWORKS, PROCEEDINGS, 2008, 5229 : 263 - +
  • [26] Robustness Metrics for Relational Query Execution Plans
    Wolf, Florian
    Brendle, Michael
    May, Norman
    Willems, Paul R.
    Sattler, Kai-Uwe
    Grossniklaus, Michael
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (11): : 1360 - 1372
  • [27] Quantitative performance metrics for robustness in circadian rhythms
    Bagheri, Neda
    Stelling, Joerg
    Doyle, Francis J., III
    BIOINFORMATICS, 2007, 23 (03) : 358 - 364
  • [28] Practical clock tree robustness signoff metrics
    Rajaram, Anand
    Damodaran, Ragurarn
    Rajagopal, Arjun
    ISQED 2008: PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, 2008, : 676 - 679
  • [29] Graph Metrics for Network Robustness-A Survey
    Oehlers, Milena
    Fabian, Benjamin
    MATHEMATICS, 2021, 9 (08)
  • [30] Toward Time-Dependent Robustness Metrics
    Du, Xiaoping
    JOURNAL OF MECHANICAL DESIGN, 2012, 134 (01)