Heat transport enhancement in confined Rayleigh-Benard convection feels the shape of the container

被引:19
|
作者
Hartmann, Robert [1 ,2 ]
Chong, Kai Leong [1 ,2 ]
Stevens, Richard J. A. M. [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ,4 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Max Planck Ctr Complex Fluid Dynam, Phys Fluids Grp, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, Dept Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[5] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
基金
欧洲研究理事会;
关键词
THERMAL-CONVECTION; TURBULENT CONVECTION; NUMBER; SCHEME;
D O I
10.1209/0295-5075/ac19ed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Moderate spatial confinement enhances the heat transfer in turbulent Rayleigh-Benard (RB) convection (Chong K. L. et al., Phys. Rev. Lett., 115 (2015) 264503). Here, by performing direct numerical simulations, we answer the question how the shape of the RB cell affects this enhancement. We compare three different geometries: a box with rectangular base (i.e., stronger confined in one horizontal direction), a box with square base (i.e., equally confined in both horizontal directions), and a cylinder (i.e., symmetrically confined in the radial direction). In all cases the confinement can be described by the same confinement parameter Gamma(-1), given as height-over-width aspect ratio. The explored parameter range is 1 <= Gamma(-1) <= 64, 10(7) <= Ra <= 1010 for the Rayleigh number, and a Prandtl number of Pr = 4.38. We find that both the optimal confinement parameter Gamma(-1)(opt) for maximal heat transfer and the actual heat transfer enhancement strongly depend on the cell geometry. The differences can be explained by the formation of different vertically coherent flow structures within the specific geometries. The enhancement is largest in the cylindrical cell, owing to the formation of a domain-spanning flow structure at the optimal confinement parameter Gamma(-1)(opt). Copyright (C) 2021 The author(s)
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [31] Rayleigh-Benard convection with imposed heat flux
    Johnston, Hans
    Doering, Charles R.
    CHAOS, 2007, 17 (04)
  • [32] HEAT-FLUX AT SECONDARY BIFURCATION IN RAYLEIGH-BENARD CONVECTION WITH AIR IN A RECTANGULAR CONTAINER
    MAVEETY, JG
    LEITH, JR
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1991, 18 (01) : 59 - 70
  • [33] Control of Rayleigh-Benard convection in a small aspect ratio container
    Howle, LE
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (04) : 817 - 822
  • [34] Heat transfer enhancement in Rayleigh-Benard convection using a single passive barrier
    Liu, Shuang
    Huisman, Sander G.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (12)
  • [35] The heat transfer enhancement by unipolar charge injection in a rectangular Rayleigh-Benard convection
    Wu, Jian-Zhao
    Wang, Bo-Fu
    Lu, Zhi-Ming
    Zhou, Quan
    AIP ADVANCES, 2022, 12 (01)
  • [36] Heat transport in horizontally periodic and confined Rayleigh-Benard convection with no-slip and free-slip plates
    Huang, Maojing
    He, Xiaozhou
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2022, 12 (02)
  • [37] Heat transport in turbulent Rayleigh-Benard convection for Pr ≃ 0.8 and Ra ≲ 1015
    Ahlers, Guenter
    Funfschilling, Denis
    Bodenschatz, Eberhard
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [38] Enhanced Heat Transport by Turbulent Two-Phase Rayleigh-Benard Convection
    Zhong, Jin-Qiang
    Funfschilling, Denis
    Ahlers, Guenter
    PHYSICAL REVIEW LETTERS, 2009, 102 (12)
  • [39] Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection
    Ahlers, G
    Xu, XC
    PHYSICAL REVIEW LETTERS, 2001, 86 (15) : 3320 - 3323
  • [40] Aspect-ratio dependence of heat transport by turbulent Rayleigh-Benard convection
    Ching, E. S. C.
    Tam, W. S.
    JOURNAL OF TURBULENCE, 2006, 7 (72): : 1 - 10