Heat transport enhancement in confined Rayleigh-Benard convection feels the shape of the container

被引:19
|
作者
Hartmann, Robert [1 ,2 ]
Chong, Kai Leong [1 ,2 ]
Stevens, Richard J. A. M. [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ,4 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Max Planck Ctr Complex Fluid Dynam, Phys Fluids Grp, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, Dept Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[5] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
基金
欧洲研究理事会;
关键词
THERMAL-CONVECTION; TURBULENT CONVECTION; NUMBER; SCHEME;
D O I
10.1209/0295-5075/ac19ed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Moderate spatial confinement enhances the heat transfer in turbulent Rayleigh-Benard (RB) convection (Chong K. L. et al., Phys. Rev. Lett., 115 (2015) 264503). Here, by performing direct numerical simulations, we answer the question how the shape of the RB cell affects this enhancement. We compare three different geometries: a box with rectangular base (i.e., stronger confined in one horizontal direction), a box with square base (i.e., equally confined in both horizontal directions), and a cylinder (i.e., symmetrically confined in the radial direction). In all cases the confinement can be described by the same confinement parameter Gamma(-1), given as height-over-width aspect ratio. The explored parameter range is 1 <= Gamma(-1) <= 64, 10(7) <= Ra <= 1010 for the Rayleigh number, and a Prandtl number of Pr = 4.38. We find that both the optimal confinement parameter Gamma(-1)(opt) for maximal heat transfer and the actual heat transfer enhancement strongly depend on the cell geometry. The differences can be explained by the formation of different vertically coherent flow structures within the specific geometries. The enhancement is largest in the cylindrical cell, owing to the formation of a domain-spanning flow structure at the optimal confinement parameter Gamma(-1)(opt). Copyright (C) 2021 The author(s)
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [41] Coherent heat transport in two-dimensional penetrative Rayleigh-Benard convection
    Ding, Zijing
    Wu, Jian
    JOURNAL OF FLUID MECHANICS, 2021, 920
  • [42] Transport bounds for a truncated model of Rayleigh-Benard convection
    Souza, Andre N.
    Doering, Charles R.
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 308 : 26 - 33
  • [43] Bounds on Rayleigh-Benard convection with an imposed heat flux
    Otero, J
    Wittenberg, RW
    Worthing, RA
    Doering, CR
    JOURNAL OF FLUID MECHANICS, 2002, 473 : 191 - 199
  • [44] Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection
    Urban, P.
    Musilova, V.
    Skrbek, L.
    PHYSICAL REVIEW LETTERS, 2011, 107 (01)
  • [45] DIFFUSIVE TRANSPORT IN A RAYLEIGH-BENARD CONVECTION-CELL
    SHRAIMAN, BI
    PHYSICAL REVIEW A, 1987, 36 (01): : 261 - 267
  • [46] Rayleigh-Benard convection heat transfer in nanoparticle suspensions
    Corcione, Massimo
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) : 65 - 77
  • [47] Heat transfer by rapidly rotating Rayleigh-Benard convection
    King, E. M.
    Stellmach, S.
    Aurnou, J. M.
    JOURNAL OF FLUID MECHANICS, 2012, 691 : 568 - 582
  • [48] Local heat fluxes in turbulent Rayleigh-Benard convection
    Shishkina, Olga
    Wagner, Claus
    PHYSICS OF FLUIDS, 2007, 19 (08)
  • [49] Nonlinear Rayleigh-Benard Convection With Variable Heat Source
    Siddheshwar, P. G.
    Titus, P. Stephen
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (12):
  • [50] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956