Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection

被引:115
|
作者
Ahlers, G [1 ]
Xu, XC
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, IQUEST, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.86.3320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present measurements of the Nusselt number N as a function of the Rayleigh number R and the Prandtl number a in cylindrical cells with aspect ratios Gamma = 0.5 and 1.0. We used acetone, methanol, ethanol, and 2-propanol with Prandtl numbers sigma = 4.0, 6.5, 14.2, and 34.1, respectively, in the range 3 X 10(7) less than or similar to R less than or similar to 10(11). At constant R, N(R, sigma) varies with sigma by only about 2%. This result disagrees with the extrapolation of the Grossmann and Lohse theory beyond its range of validity, which implies a decrease by 20% over our a range, but agrees with their recent extension of the theory to small Reynolds numbers.
引用
收藏
页码:3320 / 3323
页数:4
相关论文
共 50 条
  • [1] Turbulent Rayleigh-Benard convection in low Prandtl-number fluids
    Horanyi, S
    Krebs, L
    Müller, U
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (21) : 3983 - 4003
  • [2] Heat transport scaling in turbulent Rayleigh-Benard convection: Effects of rotation and prandtl number
    Liu, YM
    Ecke, RE
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (12) : 2257 - 2260
  • [3] Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Benard Convection
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Verzicco, Roberto
    Lohse, Detlef
    Ahlers, Guenter
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [4] Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Zhong, Jin-Qiang
    Clercx, Herman J. H.
    Verzicco, Roberto
    Lohse, Detlef
    Ahlers, Guenter
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 529 - 532
  • [5] Turbulent Rayleigh-Benard convection for a Prandtl number of 0.67
    Ahlers, Guenter
    Bodenschatz, Eberhard
    Funfschilling, Denis
    Hogg, James
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 641 : 157 - 167
  • [6] Different routes to chaos in low Prandtl-number Rayleigh-Benard convection
    Yada, Nandukumar
    Kundu, Prosenjit
    Paul, Supriyo
    Pal, Pinaki
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 81 : 261 - 267
  • [7] Influence of Prandtl number on strongly turbulent Rayleigh-Benard convection
    Cioni, S
    Ciliberto, S
    Sommeria, J
    [J]. ADVANCES IN TURBULENCES VI, 1996, 36 : 219 - 222
  • [8] Heat transport in turbulent Rayleigh-Benard convection
    Xu, XC
    Bajaj, KMS
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4357 - 4360
  • [9] Prandtl number dependence of the small-scale properties in turbulent Rayleigh-Benard convection
    Bhattacharya, Shashwat
    Verma, Mahendra K.
    Samtaney, Ravi
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (06)
  • [10] Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Benard convection
    Doering, Charles R.
    Otto, Felix
    Reznikoff, Maria G.
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 560 : 229 - 241