Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Benard Convection

被引:137
|
作者
Zhong, Jin-Qiang [1 ,2 ]
Stevens, Richard J. A. M. [3 ,4 ]
Clercx, Herman J. H. [5 ,6 ,7 ]
Verzicco, Roberto [8 ]
Lohse, Detlef [3 ,4 ]
Ahlers, Guenter [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, iQCD, Santa Barbara, CA 93106 USA
[3] Univ Twente, Dept Sci & Technol, NL-7500 AE Enschede, Netherlands
[4] Univ Twente, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
[5] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[6] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands
[7] Eindhoven Univ Technol, JM Burgers Ctr Fluid Dynam, NL-5600 MB Eindhoven, Netherlands
[8] Univ Roma Tor Vergata, Dept Mech Engn, I-00133 Rome, Italy
基金
美国国家科学基金会;
关键词
FLOW;
D O I
10.1103/PhysRevLett.102.044502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Benard convection are presented. For relatively small Ra approximate to 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at small Pr less than or similar to 0.7 there is no heat-transfer enhancement at all. We suggest that the small-Pr behavior is due to the breakdown of the heat-transfer-enhancing Ekman pumping because of larger thermal diffusion.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Zhong, Jin-Qiang
    Clercx, Herman J. H.
    Verzicco, Roberto
    Lohse, Detlef
    Ahlers, Guenter
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 529 - 532
  • [2] Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection
    Ahlers, G
    Xu, XC
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (15) : 3320 - 3323
  • [3] Turbulent Rayleigh-Benard convection for a Prandtl number of 0.67
    Ahlers, Guenter
    Bodenschatz, Eberhard
    Funfschilling, Denis
    Hogg, James
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 641 : 157 - 167
  • [4] Heat transport scaling in turbulent Rayleigh-Benard convection: Effects of rotation and prandtl number
    Liu, YM
    Ecke, RE
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (12) : 2257 - 2260
  • [5] Significance of Prandtl Number on the Heat Transport and Flow Structure in Rotating Rayleigh-Benard Convection
    Venugopal, Vishnu T.
    De, Arnab Kumar
    Mishra, Pankaj Kumar
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2020, 142 (01):
  • [6] Heat Transport in Low-Rossby-Number Rayleigh-Benard Convection
    Julien, Keith
    Knobloch, Edgar
    Rubio, Antonio M.
    Vasil, Geoffrey M.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (25)
  • [7] Heat transport in turbulent Rayleigh-Benard convection
    Xu, XC
    Bajaj, KMS
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4357 - 4360
  • [8] Influence of Prandtl number on strongly turbulent Rayleigh-Benard convection
    Cioni, S
    Ciliberto, S
    Sommeria, J
    [J]. ADVANCES IN TURBULENCES VI, 1996, 36 : 219 - 222
  • [9] Bounds for rotating Rayleigh-Benard convection at large Prandtl number
    Tilgner, A.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 930
  • [10] Heat transport by turbulent rotating Rayleigh-Benard convection and its dependence on the aspect ratio
    Weiss, Stephen
    Ahlers, Guenter
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 684 : 407 - 426