Heat Transport in Low-Rossby-Number Rayleigh-Benard Convection

被引:117
|
作者
Julien, Keith [1 ]
Knobloch, Edgar [2 ]
Rubio, Antonio M. [1 ]
Vasil, Geoffrey M. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
基金
美国国家科学基金会;
关键词
ROTATIONALLY CONSTRAINED FLOWS; THERMAL-CONVECTION; PRANDTL-NUMBER;
D O I
10.1103/PhysRevLett.109.254503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate, via simulations of asymptotically reduced equations describing rotationally constrained Rayleigh-Benard convection, that the efficiency of turbulent motion in the fluid bulk limits overall heat transport and determines the scaling of the nondimensional Nusselt number Nu with the Rayleigh number Ra, the Ekman number E, and the Prandtl number sigma. For E << 1 inviscid scaling theory predicts and simulations confirm the large Ra scaling law Nu - 1 approximate to C-1 sigma(-1/2RaE2)-E-3/2, where C-1 is a constant, estimated as C-1 approximate to 0.04 +/- 0.0025. In contrast, the corresponding result for nonrotating convection, Nu - 1 approximate to C2Ra alpha, is determined by the efficiency of the thermal boundary layers (laminar: 0.28 less than or similar to alpha less than or similar to 0.31, turbulent: alpha similar to 0.38). The 3/2 scaling law breaks down at Rayleigh numbers at which the thermal boundary layer loses rotational constraint, i.e., when the local Rossby number approximate to 1. The breakdown takes place while the bulk Rossby number is still small and results in a gradual transition to the nonrotating scaling law. For low Ekman numbers the location of this transition is independent of the mechanical boundary conditions. DOI: 10.1103/PhysRevLett.109.254503
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Statistical and physical balances in low Rossby number Rayleigh-Benard convection
    Julien, K.
    Rubio, A. M.
    Grooms, I.
    Knobloch, E.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2012, 106 (4-5): : 392 - 428
  • [2] Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Benard Convection
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Verzicco, Roberto
    Lohse, Detlef
    Ahlers, Guenter
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [3] Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Zhong, Jin-Qiang
    Clercx, Herman J. H.
    Verzicco, Roberto
    Lohse, Detlef
    Ahlers, Guenter
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 529 - 532
  • [4] Heat transport by coherent Rayleigh-Benard convection
    Waleffe, Fabian
    Boonkasame, Anakewit
    Smith, Leslie M.
    [J]. PHYSICS OF FLUIDS, 2015, 27 (05)
  • [5] Heat transport in turbulent Rayleigh-Benard convection
    Xu, XC
    Bajaj, KMS
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4357 - 4360
  • [6] Prandtl-number dependence of heat transport in turbulent Rayleigh-Benard convection
    Ahlers, G
    Xu, XC
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (15) : 3320 - 3323
  • [7] Optimal heat transport solutions for Rayleigh-Benard convection
    Sondak, David
    Smith, Leslie M.
    Waleffe, Fabian
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 784 : 565 - 595
  • [8] Heat and momentum transport in sheared Rayleigh-Benard convection
    Krishnamurti, R
    Zhu, Y
    [J]. PHYSICA D, 1996, 97 (1-3): : 126 - 132
  • [9] Heat transport in Rayleigh-Benard convection with linear marginality
    Wen, Baole
    Ding, Zijing
    Chini, Gregory P.
    Kerswell, Rich R.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2225):
  • [10] CRITICAL RAYLEIGH NUMBER IN RAYLEIGH-BENARD CONVECTION
    Guo, Yan
    Han, Yongqian
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 149 - 160