Heat Transport in Low-Rossby-Number Rayleigh-Benard Convection

被引:117
|
作者
Julien, Keith [1 ]
Knobloch, Edgar [2 ]
Rubio, Antonio M. [1 ]
Vasil, Geoffrey M. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
基金
美国国家科学基金会;
关键词
ROTATIONALLY CONSTRAINED FLOWS; THERMAL-CONVECTION; PRANDTL-NUMBER;
D O I
10.1103/PhysRevLett.109.254503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate, via simulations of asymptotically reduced equations describing rotationally constrained Rayleigh-Benard convection, that the efficiency of turbulent motion in the fluid bulk limits overall heat transport and determines the scaling of the nondimensional Nusselt number Nu with the Rayleigh number Ra, the Ekman number E, and the Prandtl number sigma. For E << 1 inviscid scaling theory predicts and simulations confirm the large Ra scaling law Nu - 1 approximate to C-1 sigma(-1/2RaE2)-E-3/2, where C-1 is a constant, estimated as C-1 approximate to 0.04 +/- 0.0025. In contrast, the corresponding result for nonrotating convection, Nu - 1 approximate to C2Ra alpha, is determined by the efficiency of the thermal boundary layers (laminar: 0.28 less than or similar to alpha less than or similar to 0.31, turbulent: alpha similar to 0.38). The 3/2 scaling law breaks down at Rayleigh numbers at which the thermal boundary layer loses rotational constraint, i.e., when the local Rossby number approximate to 1. The breakdown takes place while the bulk Rossby number is still small and results in a gradual transition to the nonrotating scaling law. For low Ekman numbers the location of this transition is independent of the mechanical boundary conditions. DOI: 10.1103/PhysRevLett.109.254503
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Nusselt number measurements for turbulent Rayleigh-Benard convection
    Nikolaenko, A
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (08)
  • [42] Influence of Ra number on flow and heat transfer in partitioned Rayleigh-Benard convection
    Bao Yun
    Lin ZePeng
    He Peng
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (04)
  • [43] Infinite Prandtl number limit of Rayleigh-Benard convection
    Wang, XM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1265 - 1282
  • [44] Heat transport in turbulent Rayleigh-Benard convection for Pr ≃ 0.8 and Ra ≲ 1015
    Ahlers, Guenter
    Funfschilling, Denis
    Bodenschatz, Eberhard
    [J]. 13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [45] Multiple heat transport maxima in confined-rotating Rayleigh-Benard convection
    Hartmann, Robert
    Verzicco, Roberto
    Kranenbarg, Liesbeth Klein
    Lohse, Detlef
    Stevens, Richard J. A. M.
    [J]. JOURNAL OF FLUID MECHANICS, 2022, 939
  • [46] Enhanced Heat Transport by Turbulent Two-Phase Rayleigh-Benard Convection
    Zhong, Jin-Qiang
    Funfschilling, Denis
    Ahlers, Guenter
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (12)
  • [47] Heat transport enhancement in confined Rayleigh-Benard convection feels the shape of the container
    Hartmann, Robert
    Chong, Kai Leong
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    [J]. EPL, 2021, 135 (02)
  • [48] Different routes to chaos in low Prandtl-number Rayleigh-Benard convection
    Yada, Nandukumar
    Kundu, Prosenjit
    Paul, Supriyo
    Pal, Pinaki
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 81 : 261 - 267
  • [49] Aspect-ratio dependence of heat transport by turbulent Rayleigh-Benard convection
    Ching, E. S. C.
    Tam, W. S.
    [J]. JOURNAL OF TURBULENCE, 2006, 7 (72): : 1 - 10
  • [50] Coherent heat transport in two-dimensional penetrative Rayleigh-Benard convection
    Ding, Zijing
    Wu, Jian
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 920