Heat transport enhancement in confined Rayleigh-Benard convection feels the shape of the container

被引:19
|
作者
Hartmann, Robert [1 ,2 ]
Chong, Kai Leong [1 ,2 ]
Stevens, Richard J. A. M. [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ,4 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Max Planck Ctr Complex Fluid Dynam, Phys Fluids Grp, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, Dept Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[5] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
基金
欧洲研究理事会;
关键词
THERMAL-CONVECTION; TURBULENT CONVECTION; NUMBER; SCHEME;
D O I
10.1209/0295-5075/ac19ed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Moderate spatial confinement enhances the heat transfer in turbulent Rayleigh-Benard (RB) convection (Chong K. L. et al., Phys. Rev. Lett., 115 (2015) 264503). Here, by performing direct numerical simulations, we answer the question how the shape of the RB cell affects this enhancement. We compare three different geometries: a box with rectangular base (i.e., stronger confined in one horizontal direction), a box with square base (i.e., equally confined in both horizontal directions), and a cylinder (i.e., symmetrically confined in the radial direction). In all cases the confinement can be described by the same confinement parameter Gamma(-1), given as height-over-width aspect ratio. The explored parameter range is 1 <= Gamma(-1) <= 64, 10(7) <= Ra <= 1010 for the Rayleigh number, and a Prandtl number of Pr = 4.38. We find that both the optimal confinement parameter Gamma(-1)(opt) for maximal heat transfer and the actual heat transfer enhancement strongly depend on the cell geometry. The differences can be explained by the formation of different vertically coherent flow structures within the specific geometries. The enhancement is largest in the cylindrical cell, owing to the formation of a domain-spanning flow structure at the optimal confinement parameter Gamma(-1)(opt). Copyright (C) 2021 The author(s)
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Rayleigh-Benard convection: The container shape matters
    Shishkina, Olga
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (09)
  • [2] Heat-transport enhancement in rotating turbulent Rayleigh-Benard convection
    Weiss, Stephan
    Wei, Ping
    Ahlers, Guenter
    [J]. PHYSICAL REVIEW E, 2016, 93 (04)
  • [3] Heat transport by coherent Rayleigh-Benard convection
    Waleffe, Fabian
    Boonkasame, Anakewit
    Smith, Leslie M.
    [J]. PHYSICS OF FLUIDS, 2015, 27 (05)
  • [4] Heat transport in turbulent Rayleigh-Benard convection
    Xu, XC
    Bajaj, KMS
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4357 - 4360
  • [5] Multiple heat transport maxima in confined-rotating Rayleigh-Benard convection
    Hartmann, Robert
    Verzicco, Roberto
    Kranenbarg, Liesbeth Klein
    Lohse, Detlef
    Stevens, Richard J. A. M.
    [J]. JOURNAL OF FLUID MECHANICS, 2022, 939
  • [6] HEAT-TRANSFER ENHANCEMENT IN RAYLEIGH-BENARD CONVECTION
    DOMARADZKI, JA
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1989, 32 (12) : 2475 - 2483
  • [7] Optimal heat transport solutions for Rayleigh-Benard convection
    Sondak, David
    Smith, Leslie M.
    Waleffe, Fabian
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 784 : 565 - 595
  • [8] Heat and momentum transport in sheared Rayleigh-Benard convection
    Krishnamurti, R
    Zhu, Y
    [J]. PHYSICA D, 1996, 97 (1-3): : 126 - 132
  • [9] Heat transport in Rayleigh-Benard convection with linear marginality
    Wen, Baole
    Ding, Zijing
    Chini, Gregory P.
    Kerswell, Rich R.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2225):
  • [10] Confined Rayleigh-Benard, Rotating Rayleigh-Benard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation
    Chong, Kai Leong
    Yang, Yantao
    Huang, Shi-Di
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (06)