Intrinsic Dimension Estimation Using Wasserstein Distance

被引:0
|
作者
Block, Adam [1 ]
Jia, Zeyu [2 ]
Polyanskiy, Yury [2 ]
Rakhlin, Alexander [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, Stat & Data Sci Ctr, Cambridge, MA 02139 USA
关键词
Manifold Hypothesis; Dimension Estimation; Manifold Learning; Intrinsic Dimension; Hclder GANs; EIGENMAPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has long been thought that high-dimensional data encountered in many practical ma-chine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to estimate the intrinsic dimension of a given population distri-bution from a finite sample. We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending only on the intrinsic dimension of the data.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Topological data assimilation using Wasserstein distance
    Li, Long
    Vidard, Arthur
    Le Dimet, Francois-Xavier
    Ma, Jianwei
    INVERSE PROBLEMS, 2019, 35 (01)
  • [22] Optimal Estimation of Wasserstein Distance on a Tree With an Application to Microbiome Studies
    Wang, Shulei
    Cai, T. Tony
    Li, Hongzhe
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (535) : 1237 - 1253
  • [23] Correcting nuisance variation using Wasserstein distance
    Tabak, Gil
    Fan, Minjie
    Yang, Samuel
    Hoyer, Stephan
    Davis, Geoffrey
    PEERJ, 2020, 8
  • [24] Generative Modeling using the Sliced Wasserstein Distance
    Deshpande, Ishan
    Zhang, Ziyu
    Schwing, Alexander
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3483 - 3491
  • [25] Rdimtools: An R package for dimension reduction and intrinsic dimension estimation
    You, Kisung
    Shung, Dennis
    SOFTWARE IMPACTS, 2022, 14
  • [26] Classification of Periodic Activities Using the Wasserstein Distance
    Oudre, Laurent
    Jakubowicz, Jeremie
    Bianchi, Pascal
    Simon, Chantal
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (06) : 1610 - 1619
  • [27] Grid-Less DOA Estimation Using Sparse Linear Arrays Based on Wasserstein Distance
    Wang, Mianzhi
    Zhang, Zhen
    Nehorai, Arye
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 838 - 842
  • [28] Intrinsic dimension estimation for locally undersampled data
    Erba, Vittorio
    Gherardi, Marco
    Rotondo, Pietro
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [29] Intrinsic dimension estimation: Advances and open problems
    Camastra, Francesco
    Staiano, Antonino
    INFORMATION SCIENCES, 2016, 328 : 26 - 41
  • [30] On Local Intrinsic Dimension Estimation and Its Applications
    Carter, Kevin M.
    Raich, Raviv
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (02) : 650 - 663