Topological data assimilation using Wasserstein distance

被引:12
|
作者
Li, Long [1 ,2 ,3 ]
Vidard, Arthur [3 ]
Le Dimet, Francois-Xavier [3 ]
Ma, Jianwei [1 ,2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Ctr Geophys, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Grenoble Alpes, INRIA, Grenoble INP, CNRS,LJK, F-38000 Grenoble, France
关键词
data assimilation; Wasserstein distance; level set; prediction of geophysical fluids; optimal transport approach; geophysical inverse problem; LEVEL-SET METHODS; DATA-DRIVEN SIMULATIONS; ENSEMBLE KALMAN FILTER; OPTIMAL TRANSPORT; WILDFIRE SPREAD; MODEL; ALGORITHMS; TRACKING; ERROR;
D O I
10.1088/1361-6420/aae993
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work combines a level-set approach and the optimal transport-based Wasserstein distance in a data assimilation framework. The primary motivation of this work is to reduce assimilation artifacts resulting from the position and observation error in the tracking and forecast of pollutants present on the surface of oceans or lakes. Both errors lead to spurious effect on the forecast that need to be corrected. In general, the geometric contour of such pollution can be retrieved from observation while more detailed characteristics such as concentration remain unknown. Herein, level sets are tools of choice to model such contours and the dynamical evolution of their topology structures. They are compared with contours extracted from observation using the Wasserstein distance. This allows to better capture position mismatches between both sources compared with the more classical Euclidean distance. Finally, the viability of this approach is demonstrated through academic test cases and its numerical performance is discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Ensemble data assimilation using optimal control in the Wasserstein metric
    Liu, Xin
    Frank, Jason
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [2] Regularized variational data assimilation for bias treatment using the Wasserstein metric
    Tamang, Sagar K.
    Ebtehaj, Ardeshir
    Zou, Dongmian
    Lerman, Gilad
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) : 2332 - 2346
  • [3] Comparing histogram data using a Mahalanobis-Wasserstein distance
    Verde, Rosanna
    Irpino, Antonio
    COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 77 - 89
  • [4] Unified topological inference for brain networks in temporal lobe epilepsy using the Wasserstein distance
    Chung, Moo K.
    Ramos, Camille Garcia
    De Paiva, Felipe Branco
    Mathis, Jedidiah
    Prabhakaran, Vivek
    Nair, Veena A.
    Meyerand, Mary E.
    Hermann, Bruce P.
    Binder, Jeffrey R.
    Struck, Aaron F.
    NEUROIMAGE, 2023, 284
  • [5] Dynamic clustering of interval data using a Wasserstein-based distance
    Irpino, Antonio
    Verde, Rosanna
    PATTERN RECOGNITION LETTERS, 2008, 29 (11) : 1648 - 1658
  • [6] Ensemble Riemannian data assimilation over the Wasserstein space
    Tamang, Sagar K.
    Ebtehaj, Ardeshir
    van Leeuwen, Peter J.
    Zou, Dongmian
    Lerman, Gilad
    NONLINEAR PROCESSES IN GEOPHYSICS, 2021, 28 (03) : 295 - 309
  • [7] Partial ordered Wasserstein distance for sequential data
    Doan, Tung
    Phan, Tuan
    Nguyen, Phu
    Than, Khoat
    Visani, Muriel
    Takasu, Atsuhiro
    NEUROCOMPUTING, 2024, 595
  • [8] Explainable AI Using the Wasserstein Distance
    Chaudhury, Shion Samadder
    Sadhukhan, Payel
    Sengupta, Kausik
    IEEE ACCESS, 2024, 12 : 18087 - 18102
  • [9] Clustering Linear Models Using Wasserstein Distance
    Irpino, Antonio
    Verde, Rosanna
    DATA ANALYSIS AND CLASSIFICATION, 2010, : 41 - 48
  • [10] Intrinsic Dimension Estimation Using Wasserstein Distance
    Block, Adam
    Jia, Zeyu
    Polyanskiy, Yury
    Rakhlin, Alexander
    Journal of Machine Learning Research, 2022, 23