Ensemble Riemannian data assimilation over the Wasserstein space

被引:6
|
作者
Tamang, Sagar K. [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
van Leeuwen, Peter J. [3 ]
Zou, Dongmian [4 ]
Lerman, Gilad [5 ]
机构
[1] Univ Minnesota Twin Cities, Dept Civil Environm & Geoengn, St Paul, MN 55455 USA
[2] Univ Minnesota Twin Cities, St Anthony Falls Lab, St Paul, MN 55455 USA
[3] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[4] Duke Kunshan Univ, Div Nat & Appl Sci, Kunshan, Peoples R China
[5] Univ Minnesota Twin Cities, Sch Math, St Paul, MN USA
基金
美国国家航空航天局; 欧盟地平线“2020”; 欧洲研究理事会; 美国国家科学基金会;
关键词
VARIATIONAL DATA ASSIMILATION; METEOROLOGICAL OBSERVATIONS; PARTICLE FILTER; MODEL ERROR; TRANSPORT; BIAS;
D O I
10.5194/npg-28-295-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Euclidean distance used in classic data assimilation methodologies, the Wasserstein metric can capture the translation and difference between the shapes of square-integrable probability distributions of the background state and observations. This enables us to formally penalize geophysical biases in state space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics, and its potential advantages and limitations are highlighted compared to the classic ensemble data assimilation approaches under systematic errors.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 50 条
  • [1] GEOMETRY ON THE WASSERSTEIN SPACE OVER A COMPACT RIEMANNIAN MANIFOLD
    丁昊
    Shizan FANG
    ActaMathematicaScientia, 2021, 41 (06) : 1959 - 1984
  • [2] Geometry on the Wasserstein Space Over a Compact Riemannian Manifold
    Ding, Hao
    Fang, Shizan
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 1959 - 1984
  • [3] Geometry on the Wasserstein Space Over a Compact Riemannian Manifold
    Hao Ding
    Shizan Fang
    Acta Mathematica Scientia, 2021, 41 : 1959 - 1984
  • [4] Ensemble data assimilation using optimal control in the Wasserstein metric
    Liu, Xin
    Frank, Jason
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [5] Wasserstein barycenters over Riemannian manifolds
    Kim, Young-Heon
    Pass, Brendan
    ADVANCES IN MATHEMATICS, 2017, 307 : 640 - 683
  • [6] W-entropy and Langevin deformation on Wasserstein space over Riemannian manifolds
    Li, Songzi
    Li, Xiang-Dong
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) : 911 - 955
  • [7] W-entropy and Langevin deformation on Wasserstein space over Riemannian manifolds
    Songzi Li
    Xiang-Dong Li
    Probability Theory and Related Fields, 2024, 188 : 911 - 955
  • [8] Ensemble Riemannian data assimilation: towards large-scale dynamical systems
    Tamang, Sagar K.
    Ebtehaj, Ardeshir
    van Leeuwen, Peter Jan
    Lerman, Gilad
    Foufoula-Georgiou, Efi
    NONLINEAR PROCESSES IN GEOPHYSICS, 2022, 29 (01) : 77 - 92
  • [9] Wasserstein space over the Wiener space
    Fang, Shizan
    Shao, Jinghai
    Sturm, Karl-Theodor
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (3-4) : 535 - 565
  • [10] Wasserstein space over the Wiener space
    Shizan Fang
    Jinghai Shao
    Karl-Theodor Sturm
    Probability Theory and Related Fields, 2010, 146 : 535 - 565