Topological data assimilation using Wasserstein distance

被引:12
|
作者
Li, Long [1 ,2 ,3 ]
Vidard, Arthur [3 ]
Le Dimet, Francois-Xavier [3 ]
Ma, Jianwei [1 ,2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Ctr Geophys, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Grenoble Alpes, INRIA, Grenoble INP, CNRS,LJK, F-38000 Grenoble, France
关键词
data assimilation; Wasserstein distance; level set; prediction of geophysical fluids; optimal transport approach; geophysical inverse problem; LEVEL-SET METHODS; DATA-DRIVEN SIMULATIONS; ENSEMBLE KALMAN FILTER; OPTIMAL TRANSPORT; WILDFIRE SPREAD; MODEL; ALGORITHMS; TRACKING; ERROR;
D O I
10.1088/1361-6420/aae993
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work combines a level-set approach and the optimal transport-based Wasserstein distance in a data assimilation framework. The primary motivation of this work is to reduce assimilation artifacts resulting from the position and observation error in the tracking and forecast of pollutants present on the surface of oceans or lakes. Both errors lead to spurious effect on the forecast that need to be corrected. In general, the geometric contour of such pollution can be retrieved from observation while more detailed characteristics such as concentration remain unknown. Herein, level sets are tools of choice to model such contours and the dynamical evolution of their topology structures. They are compared with contours extracted from observation using the Wasserstein distance. This allows to better capture position mismatches between both sources compared with the more classical Euclidean distance. Finally, the viability of this approach is demonstrated through academic test cases and its numerical performance is discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Two-sample Test using Projected Wasserstein Distance
    Wang, Jie
    Gao, Rui
    Xie, Yao
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3320 - 3325
  • [32] On Properties of the Generalized Wasserstein Distance
    Piccoli, Benedetto
    Rossi, Francesco
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1339 - 1365
  • [33] THE WASSERSTEIN DISTANCE AND APPROXIMATION THEOREMS
    RUSCHENDORF, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (01): : 117 - 129
  • [34] The Wasserstein Distance for Ricci Shrinkers
    Conrado, Franciele
    Zhou, Detang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10485 - 10502
  • [35] DECWA : Density-Based Clustering using Wasserstein Distance
    El Malki, Nabil
    Cugny, Robin
    Teste, Olivier
    Ravat, Franck
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2005 - 2008
  • [36] STYLE TRANSFER USING OPTIMAL TRANSPORT VIA WASSERSTEIN DISTANCE
    Ryu, Oseok
    Lee, Bowon
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2681 - 2685
  • [37] Wasserstein distance and metric trees
    Mathey-Prevot, Maxime
    Valette, Alain
    ENSEIGNEMENT MATHEMATIQUE, 2023, 69 (3-4): : 315 - 333
  • [38] Irregularity of Distribution in Wasserstein Distance
    Cole Graham
    Journal of Fourier Analysis and Applications, 2020, 26
  • [39] Wasserstein distance for OWA operators
    Harmati, Istvan a.
    Coroianu, Lucian
    Fuller, Robert
    FUZZY SETS AND SYSTEMS, 2024, 484
  • [40] Separability and completeness for the Wasserstein distance
    Bolley, F.
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 371 - 377