The Wasserstein Distance for Ricci Shrinkers

被引:0
|
作者
Conrado, Franciele [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
关键词
PERELMANS REDUCED VOLUME; GAP THEOREM; SOLITONS; CLASSIFICATION; RIGIDITY;
D O I
10.1093/imrn/rnae099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $(M<^>{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )<^>{-\frac{n}{2}}e<^>{-f}dv_{g}$ is a probability measure. Given a point $p\in M$ , we consider two probability measures defined in the tangent space $T_{p}M$ , namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$ . In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $ , and which also elucidates the rigidity implications resulting from this estimate.
引用
收藏
页码:10485 / 10502
页数:18
相关论文
共 50 条
  • [1] On the structure of Ricci shrinkers
    Li, Haozhao
    Li, Yu
    Wang, Bing
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (09)
  • [2] Commutator Formulas for Gradient Ricci Shrinkers and Their Application to Linear Stability of Gradient Ricci Shrinkers
    Mehrmohamadi, Mansour
    Razavi, Asadollah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (04)
  • [3] Heat kernel on Ricci shrinkers
    Yu Li
    Bing Wang
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [4] Propagation of symmetries for Ricci shrinkers
    Colding, Tobias Holck
    Minicozzi, William P. P.
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [5] Heat kernel on Ricci shrinkers
    Li, Yu
    Wang, Bing
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (06)
  • [6] HEAT KERNEL ON RICCI SHRINKERS(Ⅱ)
    李宇
    王兵
    Acta Mathematica Scientia, 2024, 44 (05) : 1639 - 1695
  • [7] THE RIGIDITY OF RICCI SHRINKERS OF DIMENSION FOUR
    Li, Yu
    Wang, Bing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (10) : 6949 - 6972
  • [8] RIGIDITY OF THE ROUND CYLINDERS IN RICCI SHRINKERS
    Li, Yu
    Wang, Bing
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (02) : 817 - 897
  • [9] Heat kernel on Ricci shrinkers (II)
    Li, Yu
    Wang, Bing
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1639 - 1695
  • [10] A Compactness Theorem for Complete Ricci Shrinkers
    Haslhofer, Robert
    Mueller, Reto
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (05) : 1091 - 1116