Intrinsic Dimension Estimation Using Wasserstein Distance

被引:0
|
作者
Block, Adam [1 ]
Jia, Zeyu [2 ]
Polyanskiy, Yury [2 ]
Rakhlin, Alexander [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, Stat & Data Sci Ctr, Cambridge, MA 02139 USA
关键词
Manifold Hypothesis; Dimension Estimation; Manifold Learning; Intrinsic Dimension; Hclder GANs; EIGENMAPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has long been thought that high-dimensional data encountered in many practical ma-chine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to estimate the intrinsic dimension of a given population distri-bution from a finite sample. We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending only on the intrinsic dimension of the data.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Towards Inverse Modeling of Landscapes Using the Wasserstein Distance
    Morris, M. J.
    Lipp, A. G.
    Roberts, G. G.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (14)
  • [42] Distance estimation in the third dimension in desert ants
    Wohlgemuth, S
    Ronacher, B
    Wehner, R
    JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 2002, 188 (04): : 273 - 281
  • [43] Distance estimation in the third dimension in desert ants
    S. Wohlgemuth
    B. Ronacher
    R. Wehner
    Journal of Comparative Physiology A, 2002, 188 : 273 - 281
  • [44] Honeybee navigation: distance estimation in the third dimension
    Dacke, M.
    Srinivasan, M. V.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2007, 210 (05): : 845 - 853
  • [45] FRACTAL DIMENSION ESTIMATION OF RGB COLOR IMAGES USING MAXIMUM COLOR DISTANCE
    Zhao, Xin
    Wang, Xingyuan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (04)
  • [46] Exact statistical inference for the Wasserstein distance by selective inferenceSelective Inference for the Wasserstein Distance
    Vo Nguyen Le Duy
    Ichiro Takeuchi
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 127 - 157
  • [47] Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets
    Granata, Daniele
    Carnevale, Vincenzo
    SCIENTIFIC REPORTS, 2016, 6
  • [48] Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets
    Daniele Granata
    Vincenzo Carnevale
    Scientific Reports, 6
  • [49] ON THE ESTIMATION OF INTRINSIC DIMENSION FOR 3D IMAGES
    Oprisescul, Serban
    Dumitrescu, Monica
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2014, 76 (04): : 49 - 60
  • [50] Intrinsic dimension estimation based on local adjacency information
    Qiu, Haiquan
    Yang, Youlong
    Li, Benchong
    INFORMATION SCIENCES, 2021, 558 : 21 - 33