Intrinsic Dimension Estimation Using Wasserstein Distance

被引:0
|
作者
Block, Adam [1 ]
Jia, Zeyu [2 ]
Polyanskiy, Yury [2 ]
Rakhlin, Alexander [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, Stat & Data Sci Ctr, Cambridge, MA 02139 USA
关键词
Manifold Hypothesis; Dimension Estimation; Manifold Learning; Intrinsic Dimension; Hclder GANs; EIGENMAPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has long been thought that high-dimensional data encountered in many practical ma-chine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to estimate the intrinsic dimension of a given population distri-bution from a finite sample. We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending only on the intrinsic dimension of the data.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Intrinsic Dimension Estimation Using Wasserstein Distance
    Block, Adam
    Jia, Zeyu
    Polyanskiy, Yury
    Rakhlin, Alexander
    Journal of Machine Learning Research, 2022, 23
  • [2] Tangent Space and Dimension Estimation with the Wasserstein Distance\ast
    Lim, Uzu
    Oberhauser, Harald
    Nanda, Vidit
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2024, 8 (03): : 650 - 685
  • [3] Density estimation of multivariate samples using Wasserstein distance
    Luini, E.
    Arbenz, P.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 181 - 210
  • [4] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [5] Estimation of smooth densities in Wasserstein distance
    Weed, Jonathan
    Berthet, Quentin
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [6] On the Estimation of the Wasserstein Distance in Generative Models
    Pinetz, Thomas
    Soukup, Daniel
    Pock, Thomas
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 156 - 170
  • [7] MINIMAX ESTIMATION OF SMOOTH DENSITIES IN WASSERSTEIN DISTANCE
    Niles-Weed, Jonathan
    Berthet, Quentin
    ANNALS OF STATISTICS, 2022, 50 (03): : 1519 - 1540
  • [8] Hypothesis Test and Confidence Analysis With Wasserstein Distance on General Dimension
    Imaizumi, Masaaki
    Ota, Hirofumi
    Hamaguchi, Takuo
    NEURAL COMPUTATION, 2022, 34 (06) : 1448 - 1487
  • [9] LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
    Tempczyk, Piotr
    Michaluk, Rafal
    Garncarek, Lukasz
    Spurek, Przemyslaw
    Tabor, Jacek
    Golinski, Adam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Explainable AI Using the Wasserstein Distance
    Chaudhury, Shion Samadder
    Sadhukhan, Payel
    Sengupta, Kausik
    IEEE ACCESS, 2024, 12 : 18087 - 18102