Density estimation of multivariate samples using Wasserstein distance

被引:3
|
作者
Luini, E. [1 ]
Arbenz, P. [2 ,3 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] SCOR Switzerland Ltd, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Nonparametric density estimation; Wasserstein distance; piecewise constant distribution; multivariate histogram; ASYMPTOTICS; UNIFORMITY;
D O I
10.1080/00949655.2019.1675661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Density estimation is a central topic in statistics and a fundamental task of machine learning. In this paper, we present an algorithm for approximating multivariate empirical densities with a piecewise constant distribution defined on a hyperrectangular-shaped partition of the domain. The piecewise constant distribution is constructed through a hierarchical bisection scheme, such that locally, the sample cannot be statistically distinguished from a uniform distribution. The Wasserstein distance has been used to measure the uniformity of the sample data points lying in each partition element. Since the resulting density estimator requires significantly less memory to be stored, it can be used in a situation where the information contained in a multivariate sample needs to be preserved, transferred or analysed.
引用
收藏
页码:181 / 210
页数:30
相关论文
共 50 条
  • [1] Intrinsic Dimension Estimation Using Wasserstein Distance
    Block, Adam
    Jia, Zeyu
    Polyanskiy, Yury
    Rakhlin, Alexander
    Journal of Machine Learning Research, 2022, 23
  • [2] Intrinsic Dimension Estimation Using Wasserstein Distance
    Block, Adam
    Jia, Zeyu
    Polyanskiy, Yury
    Rakhlin, Alexander
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [3] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [4] THE WEIGHTED HELLINGER DISTANCE IN THE MULTIVARIATE KERNEL DENSITY ESTIMATION
    Mugdadi, A. R.
    Anver, Haneef
    SOUTH AFRICAN STATISTICAL JOURNAL, 2016, 50 (02) : 221 - 236
  • [5] DECWA : Density-Based Clustering using Wasserstein Distance
    El Malki, Nabil
    Cugny, Robin
    Teste, Olivier
    Ravat, Franck
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2005 - 2008
  • [6] Reweighting samples under covariate shift using a Wasserstein distance criterion
    Reygner, Julien
    Touboul, Adrien
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 3278 - 3314
  • [7] Estimation of smooth densities in Wasserstein distance
    Weed, Jonathan
    Berthet, Quentin
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [8] On the Estimation of the Wasserstein Distance in Generative Models
    Pinetz, Thomas
    Soukup, Daniel
    Pock, Thomas
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 156 - 170
  • [9] Generating Adversarial Samples With Constrained Wasserstein Distance
    Wang, Kedi
    Yi, Ping
    Zou, Futai
    Wu, Yue
    IEEE ACCESS, 2019, 7 : 136812 - 136821
  • [10] MINIMAX ESTIMATION OF SMOOTH DENSITIES IN WASSERSTEIN DISTANCE
    Niles-Weed, Jonathan
    Berthet, Quentin
    ANNALS OF STATISTICS, 2022, 50 (03): : 1519 - 1540