Density estimation of multivariate samples using Wasserstein distance

被引:3
|
作者
Luini, E. [1 ]
Arbenz, P. [2 ,3 ]
机构
[1] Univ Roma La Sapienza, Rome, Italy
[2] SCOR Switzerland Ltd, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
Nonparametric density estimation; Wasserstein distance; piecewise constant distribution; multivariate histogram; ASYMPTOTICS; UNIFORMITY;
D O I
10.1080/00949655.2019.1675661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Density estimation is a central topic in statistics and a fundamental task of machine learning. In this paper, we present an algorithm for approximating multivariate empirical densities with a piecewise constant distribution defined on a hyperrectangular-shaped partition of the domain. The piecewise constant distribution is constructed through a hierarchical bisection scheme, such that locally, the sample cannot be statistically distinguished from a uniform distribution. The Wasserstein distance has been used to measure the uniformity of the sample data points lying in each partition element. Since the resulting density estimator requires significantly less memory to be stored, it can be used in a situation where the information contained in a multivariate sample needs to be preserved, transferred or analysed.
引用
收藏
页码:181 / 210
页数:30
相关论文
共 50 条
  • [21] ESTIMATION OF MULTIVARIATE BINARY DENSITY USING ORTHOGONAL FUNCTIONS
    CHEN, XR
    KRISHNAIAH, PR
    LIANG, WW
    JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 31 (02) : 178 - 186
  • [22] Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel
    Igarashi G.
    Sankhya A, 2018, 80 (2): : 247 - 266
  • [23] Clustering Linear Models Using Wasserstein Distance
    Irpino, Antonio
    Verde, Rosanna
    DATA ANALYSIS AND CLASSIFICATION, 2010, : 41 - 48
  • [24] When OT meets MoM: Robust estimation of Wasserstein Distance
    Staerman, Guillaume
    Laforgue, Pierre
    Mozharovskyi, Pavlo
    d'Alche-Buc, Florence
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 136 - +
  • [25] Topological data assimilation using Wasserstein distance
    Li, Long
    Vidard, Arthur
    Le Dimet, Francois-Xavier
    Ma, Jianwei
    INVERSE PROBLEMS, 2019, 35 (01)
  • [26] Optimal Estimation of Wasserstein Distance on a Tree With an Application to Microbiome Studies
    Wang, Shulei
    Cai, T. Tony
    Li, Hongzhe
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (535) : 1237 - 1253
  • [27] Correcting nuisance variation using Wasserstein distance
    Tabak, Gil
    Fan, Minjie
    Yang, Samuel
    Hoyer, Stephan
    Davis, Geoffrey
    PEERJ, 2020, 8
  • [28] Generative Modeling using the Sliced Wasserstein Distance
    Deshpande, Ishan
    Zhang, Ziyu
    Schwing, Alexander
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3483 - 3491
  • [29] Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator
    Anastasiou, Andreas
    Gaunt, Robert E.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5758 - 5810
  • [30] Classification of Periodic Activities Using the Wasserstein Distance
    Oudre, Laurent
    Jakubowicz, Jeremie
    Bianchi, Pascal
    Simon, Chantal
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (06) : 1610 - 1619