On the two obstacles problem in Orlicz-Sobolev spaces and applications

被引:38
|
作者
Rodrigues, Jose Francisco [1 ]
Teymurazyan, Rafayel [1 ]
机构
[1] Univ Lisbon, Ctr Matemat & Aplicacoes Fundamentais CMAF FCUL, P-1649003 Lisbon, Portugal
关键词
quasi-linear elliptic operators; obstacle problems; variable growth condition; Orlicz-Sobolev spaces; N-membranes problem; elliptic quasi-variational inequalities; NONLINEAR ELLIPTIC PROBLEM; VARIABLE EXPONENT; REGULARITY; EQUATIONS; INEQUALITIES; FUNCTIONALS; EXISTENCE; BOUNDARY;
D O I
10.1080/17476933.2010.505016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Lewy-Stampacchia inequalities for the two obstacles problem in abstract form for T-monotone operators. As a consequence for a general class of quasi-linear elliptic operators of Ladyzhenskaya-Uraltseva type, including p(x)-Laplacian type operators, we derive new results of C-1,C-alpha regularity for the solution. We also apply those inequalities to obtain new results to the N-membranes problem and the regularity and monotonicity properties to obtain the existence of a solution to a quasi-variational problem in (generalized) Orlicz-Sobolev spaces.
引用
收藏
页码:769 / 787
页数:19
相关论文
共 50 条
  • [31] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [32] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [33] NEMITSKY OPERATORS BETWEEN ORLICZ-SOBOLEV SPACES
    HARDY, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 30 (02) : 251 - 269
  • [34] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [35] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [36] STRAUSS AND LIONS TYPE RESULTS FOR A CLASS OF ORLICZ-SOBOLEV SPACES AND APPLICATIONS
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Santos, Jefferson A.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (02) : 435 - 456
  • [37] A sharp embedding theorem for Orlicz-Sobolev spaces
    Cianchi, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (01) : 39 - 65
  • [38] EMBEDDING THEOREMS ON THE FRACTIONAL ORLICZ-SOBOLEV SPACES
    Jung, Tacksun
    Choi, Q-Heung
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 56 - 63
  • [39] Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces
    Radulescu, Vicentiu D.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2555 - 2574
  • [40] Γ-CONVERGENCE OF INHOMOGENEOUS FUNCTIONALS IN ORLICZ-SOBOLEV SPACES
    Bocea, Marian
    Mihailescu, Mihai
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) : 287 - 303