Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces

被引:5
|
作者
Ochoa, Pablo [1 ]
Silva, Analia [2 ,3 ]
Marziani, Maria Jose Suarez [4 ]
机构
[1] Univ J A Maza, Univ Nacl Cuyo, CONICET, RA-5500 San Martin, Mendoza, Argentina
[2] Univ Nacl San Luis, Dept Matemat, FCFMyN, Ejercito Andes 950,D5700HHW, San Luis, Argentina
[3] CONICET UNSL, Inst Matemat Aplicada San Luis IMASL, Ejercito Andes 950,D5700HHW, San Luis, Argentina
[4] Univ Nacl San Luis, CONICET, Inst Matemat Aplicada San luis IMASL, Ejercito Andes 950,D5700HHW, San Luis, Argentina
关键词
Fractional Orlicz-Sobolev spaces; Existence of weak solutions; Critical point theory;
D O I
10.1007/s10231-023-01351-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence of solutions to Dirichlet problems involving the fractional g-Laplacian operator and lower order terms by appealing to sub- and supersolution methods. Moreover, we also state the existence of extremal solutions. Afterward, and under additional assumptions on the lower order structure, we establish by variational techniques the existence of multiple solutions: one positive, one negative and one with non-constant sign.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 50 条