Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces

被引:5
|
作者
Ochoa, Pablo [1 ]
Silva, Analia [2 ,3 ]
Marziani, Maria Jose Suarez [4 ]
机构
[1] Univ J A Maza, Univ Nacl Cuyo, CONICET, RA-5500 San Martin, Mendoza, Argentina
[2] Univ Nacl San Luis, Dept Matemat, FCFMyN, Ejercito Andes 950,D5700HHW, San Luis, Argentina
[3] CONICET UNSL, Inst Matemat Aplicada San Luis IMASL, Ejercito Andes 950,D5700HHW, San Luis, Argentina
[4] Univ Nacl San Luis, CONICET, Inst Matemat Aplicada San luis IMASL, Ejercito Andes 950,D5700HHW, San Luis, Argentina
关键词
Fractional Orlicz-Sobolev spaces; Existence of weak solutions; Critical point theory;
D O I
10.1007/s10231-023-01351-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence of solutions to Dirichlet problems involving the fractional g-Laplacian operator and lower order terms by appealing to sub- and supersolution methods. Moreover, we also state the existence of extremal solutions. Afterward, and under additional assumptions on the lower order structure, we establish by variational techniques the existence of multiple solutions: one positive, one negative and one with non-constant sign.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 50 条
  • [31] MULTIPLICITY OF SOLUTIONS FOR NON-HOMOGENEOUS NEUMANN PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Caristi, Giuseppe
    Henderson, Johnny
    Salari, Amjad
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [32] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Shokooh, Saeid
    Graef, John R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 339 - 351
  • [33] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Saeid Shokooh
    John R. Graef
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 339 - 351
  • [34] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [35] Existence and multiplicity of solutions for a class of quasilinear elliptic equations: An Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 420 - 428
  • [36] Existence of Solutions to a Semilinear Elliptic System Through Generalized Orlicz-Sobolev Spaces
    Hsini, M.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (02): : 168 - 193
  • [37] EXISTENCE OF WEAK SOLUTIONS FOR OBSTACLE PROBLEMS WITH VARIABLE GROWTH IN ORLICZ-SOBOLEV SPACES
    Mouad Allalou
    Said Ait Temghart
    Abderahmane Raji
    Journal of Mathematical Sciences, 2025, 289 (2) : 155 - 167
  • [38] An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces
    Bourahma, M.
    Benkirane, A.
    Bennouna, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 481 - 504
  • [39] On the existence of capacity solution for a perturbed thermistor problem in anisotropic Orlicz-Sobolev spaces
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    Talbi, Hajar
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 595 - 625
  • [40] EXISTENCE OF ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEM HAVING LARGE MONOTONOCITY IN WEIGHTED ORLICZ-SOBOLEV SPACES
    El Haji, B.
    El Moumni, M.
    Kouhaila, K.
    MATEMATICHE, 2021, 76 (01): : 37 - 61