On the two obstacles problem in Orlicz-Sobolev spaces and applications

被引:38
|
作者
Rodrigues, Jose Francisco [1 ]
Teymurazyan, Rafayel [1 ]
机构
[1] Univ Lisbon, Ctr Matemat & Aplicacoes Fundamentais CMAF FCUL, P-1649003 Lisbon, Portugal
关键词
quasi-linear elliptic operators; obstacle problems; variable growth condition; Orlicz-Sobolev spaces; N-membranes problem; elliptic quasi-variational inequalities; NONLINEAR ELLIPTIC PROBLEM; VARIABLE EXPONENT; REGULARITY; EQUATIONS; INEQUALITIES; FUNCTIONALS; EXISTENCE; BOUNDARY;
D O I
10.1080/17476933.2010.505016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Lewy-Stampacchia inequalities for the two obstacles problem in abstract form for T-monotone operators. As a consequence for a general class of quasi-linear elliptic operators of Ladyzhenskaya-Uraltseva type, including p(x)-Laplacian type operators, we derive new results of C-1,C-alpha regularity for the solution. We also apply those inequalities to obtain new results to the N-membranes problem and the regularity and monotonicity properties to obtain the existence of a solution to a quasi-variational problem in (generalized) Orlicz-Sobolev spaces.
引用
收藏
页码:769 / 787
页数:19
相关论文
共 50 条
  • [21] Composition operators in Orlicz-Sobolev spaces
    Menovshchikov, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 849 - 859
  • [22] Fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 333 - 367
  • [23] Interpolation operators in Orlicz-Sobolev spaces
    Diening, L.
    Ruzicka, M.
    NUMERISCHE MATHEMATIK, 2007, 107 (01) : 107 - 129
  • [24] A Harnack inequality in Orlicz-Sobolev spaces
    Arriagad, Waldo
    Huentutripay, Jorge
    STUDIA MATHEMATICA, 2018, 243 (02) : 117 - 137
  • [25] Removable Sets for Orlicz-Sobolev Spaces
    Nijjwal Karak
    Potential Analysis, 2015, 43 : 675 - 694
  • [26] Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces
    Benyaiche, Allami
    Khlifi, Ismail
    POSITIVITY, 2021, 25 (03) : 819 - 841
  • [27] A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
    Santos, Jefferson Abrantes
    Soares, Sergio H. Monari
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (06) : 1687 - 1720
  • [28] Multiplicity of solutions for a nonhomogeneous problem involving a potential in Orlicz-Sobolev spaces
    Irzi, Nawal
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2021, 12 (03) : 1 - 19
  • [29] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [30] A Caffarelli-Kohn-Nirenberg inequality in Orlicz-Sobolev spaces and applications
    Bocea, Marian
    Mihailescu, Mihai
    APPLICABLE ANALYSIS, 2012, 91 (09) : 1649 - 1659