On the two obstacles problem in Orlicz-Sobolev spaces and applications

被引:38
|
作者
Rodrigues, Jose Francisco [1 ]
Teymurazyan, Rafayel [1 ]
机构
[1] Univ Lisbon, Ctr Matemat & Aplicacoes Fundamentais CMAF FCUL, P-1649003 Lisbon, Portugal
关键词
quasi-linear elliptic operators; obstacle problems; variable growth condition; Orlicz-Sobolev spaces; N-membranes problem; elliptic quasi-variational inequalities; NONLINEAR ELLIPTIC PROBLEM; VARIABLE EXPONENT; REGULARITY; EQUATIONS; INEQUALITIES; FUNCTIONALS; EXISTENCE; BOUNDARY;
D O I
10.1080/17476933.2010.505016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Lewy-Stampacchia inequalities for the two obstacles problem in abstract form for T-monotone operators. As a consequence for a general class of quasi-linear elliptic operators of Ladyzhenskaya-Uraltseva type, including p(x)-Laplacian type operators, we derive new results of C-1,C-alpha regularity for the solution. We also apply those inequalities to obtain new results to the N-membranes problem and the regularity and monotonicity properties to obtain the existence of a solution to a quasi-variational problem in (generalized) Orlicz-Sobolev spaces.
引用
收藏
页码:769 / 787
页数:19
相关论文
共 50 条
  • [1] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256
  • [2] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [3] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [4] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [5] MULTIPLICITY OF SOLUTIONS FOR AN ANISOTROPIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    Stancu-Dumitru, Denisa
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (05) : 815 - 834
  • [6] A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 455 - 462
  • [7] On a Class of Schrodinger System Problem in Orlicz-Sobolev Spaces
    El-Houari, H.
    Chadli, L. S.
    Moussa, H.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [8] Multiple solutions for a nonlocal problem in Orlicz-Sobolev spaces
    Chung N.T.
    Ricerche di Matematica, 2014, 63 (1) : 169 - 182
  • [9] A constrained shape optimization problem in Orlicz-Sobolev spaces
    Vitor da Silva, Joao
    Salort, Ariel M.
    Silva, Analia
    Spedaletti, Juan F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5493 - 5520
  • [10] ON A PROPERTY OF ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1107 : 102 - 105