A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES

被引:0
|
作者
GOSSEZ, JP [1 ]
机构
[1] UNIV LIBRE BRUXELLES,B-1050 BRUSSELS,BELGIUM
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [1] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [2] Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces
    Huentutripay, Jorge
    Manasevich, Raul
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 901 - 929
  • [3] On some nonlinear elliptic problems in anisotropic Orlicz-Sobolev spaces
    Elarabi, Rabab
    Lahmi, Badr
    Ouyahya, Hakima
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [5] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256
  • [6] On a nonlinear eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Youssfi, Ahmed
    Khatri, Mohamed Mahmoud Ould
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190 (190)
  • [7] Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz-Sobolev Spaces
    Moussa, H.
    Ortegon Gallego, F.
    Rhoudaf, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [8] Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces
    Benyaiche, Allami
    Khlifi, Ismail
    POSITIVITY, 2021, 25 (03) : 819 - 841
  • [9] Solvability of Strongly Nonlinear Obstacle Parabolic Problems in Inhomogeneous Orlicz-Sobolev Spaces
    Bourahma, Mohamed
    Bennouna, Jaouad
    El Haji, Badr
    Benkirane, Abdelmoujib
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (04) : 463 - 487
  • [10] A class of elliptic inclusion in fractional Orlicz-Sobolev spaces
    El-houari, Hamza
    Moussa, Hicham
    Chadli, Lalla Saadia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 755 - 772