On a nonlinear eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces

被引:3
|
作者
Youssfi, Ahmed [1 ]
Khatri, Mohamed Mahmoud Ould [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Natl Sch Appl Scien, Lab Engn Syst & Applicat, POB 72 Fes Pricipale, Fes, Morocco
关键词
Orlicz-Sobolev spaces; Nonlinear eigenvalue problems; Harnack inequality; DIFFERENTIAL-OPERATORS; 1ST EIGENVALUE;
D O I
10.1016/j.na.2019.111607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear eigenvalue problem for some elliptic equations governed by general operators including the p-Laplacian. The natural framework in which we consider such equations is that of Orlicz-Sobolev spaces. We exhibit two positive constants lambda(0) and lambda(1) with lambda(0) <= lambda(1) such that lambda(1) is an eigenvalue of the problem while any value lambda < lambda(0) cannot be so. By means of Harnack-type inequalities and a strong maximum principle, we prove the isolation of lambda(1) on the right side. We emphasize that throughout the paper no Delta(2)-condition is needed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [2] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [3] Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 305 - 318
  • [4] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [5] On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces
    Le, Vy K.
    Motreanu, Dumitru
    Motreanu, Viorica V.
    APPLICABLE ANALYSIS, 2010, 89 (02) : 229 - 242
  • [6] A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 455 - 462
  • [7] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [8] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [9] Extension in generalized Orlicz-Sobolev spaces
    Juusti, Jonne
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [10] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256