On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces

被引:13
|
作者
Le, Vy K. [1 ]
Motreanu, Dumitru [2 ]
Motreanu, Viorica V. [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[2] Univ Perpignan, Dept Math, F-66025 Perpignan, France
[3] Univ Zurich, Inst Math, CH-8001 Zurich, Switzerland
关键词
non-smooth eigenvalue problem; Orlicz-Sobolev spaces; finite-dimensional approximation; Ljusternik-Schnirelman theory; Krasnoselskii genus; LJUSTERNIK-SCHNIRELMANN THEOREM;
D O I
10.1080/00036810802428987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies a non-smooth eigenvalue problem for a Dirichlet boundary value inclusion on a bounded domain which involves a phi-Laplacian and the generalized gradient in the sense of Clarke of a locally Lipschitz function depending also on the points in . Specifically, the existence of a sequence of eigensolutions satisfying in addition certain asymptotic and locational properties is established. The approach relies on an approximation process in a suitable Orlicz-Sobolev space by eigenvalue problems in finite-dimensional spaces for which one can apply a finite-dimensional, non-smooth version of the Ljusternik-Schnirelman theorem. As a byproduct of our analysis, a version of Aubin-Clarke's theorem in Orlicz spaces is obtained.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 50 条
  • [1] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [2] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [3] On a nonlinear eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Youssfi, Ahmed
    Khatri, Mohamed Mahmoud Ould
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190 (190)
  • [4] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [5] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [6] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256
  • [7] Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 305 - 318
  • [8] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [9] Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev spaceNonlocal eigenvalue type problem
    Elhoussine Azroul
    Abdelmoujib Benkirane
    Mohammed Srati
    Advances in Operator Theory, 2020, 5 : 1599 - 1617
  • [10] MULTIPLICITY OF SOLUTIONS FOR AN ANISOTROPIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    Stancu-Dumitru, Denisa
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (05) : 815 - 834