Longest alternating subsequences of k-ary words

被引:4
|
作者
Mansour, Toufik [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
k-ary word; alternating sequence; generating function;
D O I
10.1016/j.dam.2007.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Stanley [Longest alternating subsequences of permutations, preprint, arXiv/0511419v1] studied the length of the longest alternating subsequence of a permutation in the symmetric group, where a sequence a, b, c, d,... is alternating if a > b < c > d < .... In this paper, we extend this result to the case of k-ary words. More precisely, we find an explicit formula for the generating function of the number of k-ary words of length n according to the length of the longest alternating subsequence. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 50 条
  • [41] An approximating k-ary GCD algorithm
    Ishmukhametov, Sh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 723 - 729
  • [42] Practical Cryptanalysis of k-ary C*
    Smith-Tone, Daniel
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2020, 2020, 12100 : 360 - 380
  • [43] On k-ary spanning trees of tournaments
    Lu, XY
    Wang, DW
    Chang, GJ
    Lin, IJ
    Wong, CK
    JOURNAL OF GRAPH THEORY, 1999, 30 (03) : 167 - 176
  • [44] Reconfigurable k-ary tree multiprocessors
    Izadi, B.A.
    Ozguner, F.
    International Journal of Parallel and Distributed Systems and Networks, 2000, 3 (04): : 227 - 234
  • [45] On Longest Increasing Subsequences in Words in Which All Multiplicities are Equal
    Balogh, Ferenc
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (07)
  • [46] On interpolation functions for the number of k-ary Lyndon words associated with the Apostol–Euler numbers and their applications
    Irem Kucukoglu
    Yilmaz Simsek
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 281 - 297
  • [47] GENERATING K-ARY TREES IN LEXICOGRAPHIC ORDER
    ZHU, Y
    WANG, J
    SCIENTIA SINICA, 1980, 23 (10): : 1219 - 1225
  • [48] Stagewise learning for noisy k-ary preferences
    Yuangang Pan
    Bo Han
    Ivor W. Tsang
    Machine Learning, 2018, 107 : 1333 - 1361
  • [49] Computing Longest Lyndon Subsequences and Longest Common Lyndon Subsequences
    Bannai, Hideo
    Tomohiro, I
    Kociumaka, Tomasz
    Koeppl, Dominik
    Puglisi, Simon J.
    ALGORITHMICA, 2024, 86 (03) : 735 - 756
  • [50] The rotation graph of k-ary trees is Hamiltonian
    Huemer, Clemens
    Hurtado, Ferran
    Pfeifle, Julian
    INFORMATION PROCESSING LETTERS, 2008, 109 (02) : 124 - 129