Longest alternating subsequences of k-ary words

被引:4
|
作者
Mansour, Toufik [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
k-ary word; alternating sequence; generating function;
D O I
10.1016/j.dam.2007.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Stanley [Longest alternating subsequences of permutations, preprint, arXiv/0511419v1] studied the length of the longest alternating subsequence of a permutation in the symmetric group, where a sequence a, b, c, d,... is alternating if a > b < c > d < .... In this paper, we extend this result to the case of k-ary words. More precisely, we find an explicit formula for the generating function of the number of k-ary words of length n according to the length of the longest alternating subsequence. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 50 条
  • [21] Closeness to the diagonal for longest common subsequences in random words
    Houdre, Christian
    Matzinger, Heinrich
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [22] Capturing k-ary existential second order logic with k-ary inclusion-exclusion logic
    Ronnholm, Raine
    ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (03) : 177 - 215
  • [23] Pattern avoidance in k-ary heaps
    Levin, Derek
    Pudwell, Lara K.
    Riehl, Manda
    Sandberg, Andrew
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 120 - 139
  • [24] GENERATION AND RANKING OF K-ARY TREES
    ZAKS, S
    INFORMATION PROCESSING LETTERS, 1982, 14 (01) : 44 - 48
  • [25] On k-ary parts of maximal clones
    Dragan Mašulović
    Maja Pech
    Algebra universalis, 2024, 85
  • [26] NUMBER OF K-ARY DIVISORS OF AN INTEGER
    SURYANARAYANA, D
    MONATSHEFTE FUR MATHEMATIK, 1968, 72 (05): : 445 - +
  • [27] On the k-ary convolution of arithmetical functions
    Haukkanen, P
    FIBONACCI QUARTERLY, 2000, 38 (05): : 440 - 445
  • [28] On k-ary parts of maximal clones
    Masulovic, Dragan
    Pech, Maja
    ALGEBRA UNIVERSALIS, 2024, 85 (02)
  • [29] On Acceleration of the k-ary GCD Algorithm
    Amer, I
    Ishmukhametov, S. T.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2019, 161 (01): : 110 - 118
  • [30] Restricted 132-avoiding k-ary words, Chebyshev polynomials, and continued fractions
    Mansour, T
    ADVANCES IN APPLIED MATHEMATICS, 2006, 36 (02) : 175 - 193