On interpolation functions for the number of k-ary Lyndon words associated with the Apostol–Euler numbers and their applications

被引:0
|
作者
Irem Kucukoglu
Yilmaz Simsek
机构
[1] Antalya Akev University,Faculty of Engineering and Architecture, Department of Software Engineering
[2] University of Akdeniz,Department of Mathematics, Faculty of Science
关键词
Lyndon words; Generating functions; Special numbers; Special polynomials; Differential operator; Algorithm; Stirling numbers of the first kind; Apostol–Euler numbers and polynomials; Frobenius–Euler numbers and polynomials; Arithmetical functions; 03D40; 05A05; 05A15; 11A25; 11B68; 11B83; 11M35; 11S40; 47E05; 68R15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to construct interpolation functions for the numbers of the k-ary Lyndon words which count n digit primitive necklace class representative on the set of the k-letter alphabet. By using the unified zeta-type function and the unification of the Apostol-type numbers which are defined by Ozden et al. (Comput Math Appl 60:2779–2787, 2010), we give an alternating series for the numbers of the k-ary Lyndon words, Lkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{k}\left( n\right) $$\end{document} in terms of the Apostol–Euler numbers and Frobenius–Euler numbers. We investigate various properties of these functions. Furthermore, applying higher order derivative operator to the interpolation functions for the Lyndon words, we derive ODEs including Stirling-type numbers, the Apostol–Euler numbers, the unified zeta-type functions and also combinatorial sums. By using recurrence relation of the Apostol–Euler numbers, we give computation algorithms for computing not only the Apostol–Euler numbers but also the interpolation functions of the numbers Lkn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{k}\left( n\right) $$\end{document}. We also give some remarks, observations and computations for sums of infinite series including these interpolation functions.
引用
收藏
页码:281 / 297
页数:16
相关论文
共 8 条
  • [1] On interpolation functions for the number of k-ary Lyndon words associated with the Apostol-Euler numbers and their applications
    Kucukoglu, Irem
    Simsek, Yilmaz
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 281 - 297
  • [2] On k-ary Lyndon Words and their Generating Functions
    Kucukoglu, Irem
    Simsek, Yilmaz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [3] Computation of k-ary Lyndon Words Using Generating Functions and Their Differential Equations
    Kucukoglu, Irem
    Simsek, Yilmaz
    FILOMAT, 2018, 32 (10) : 3455 - 3463
  • [4] k-ary Lyndon Words and Necklaces Arising as Rational Arguments of Hurwitz–Lerch Zeta Function and Apostol–Bernoulli Polynomials
    Irem Kucukoglu
    Abdelmejid Bayad
    Yilmaz Simsek
    Mediterranean Journal of Mathematics, 2017, 14
  • [5] k-ary Lyndon Words and Necklaces Arising as Rational Arguments of Hurwitz-Lerch Zeta Function and Apostol-Bernoulli Polynomials
    Kucukoglu, Irem
    Bayad, Abdelmejid
    Simsek, Yilmaz
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
  • [6] NUMERICAL EVALUATION OF SPECIAL POWER SERIES INCLUDING THE NUMBERS OF LYNDON WORDS: AN APPROACH TO INTERPOLATION FUNCTIONS FOR APOSTOL-TYPE NUMBERS AND POLYNOMIALS
    Kucukoglu, Irem
    Simsek, Yilmaz
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2018, 50 : 98 - 108
  • [7] Wilf-equivalence on k-ary words, compositions, and parking functions
    Jelinek, Vit
    Mansour, Toufik
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [8] Multivariate interpolation functions of higher-order q-euler numbers and their applications
    Ozden, Hacer
    Cangul, Ismail Naci
    Simsek, Yilmaz
    ABSTRACT AND APPLIED ANALYSIS, 2008,