A conductance-based silicon neuron with dynamically tunable model parameters

被引:0
|
作者
Saïghi, S [1 ]
Tomas, J [1 ]
Bornat, Y [1 ]
Renaud, S [1 ]
机构
[1] Univ Bordeaux 1, IXL Lab, UMR 5818, CNRS,ENSEIRB, F-33405 Talence, France
来源
2005 2ND INTERNATINOAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING | 2005年
关键词
aVLSI circuits; neuromimetic devices; Hodgkin-Huxley; silicon neuron;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an analog neuromimetic ASIC. It integrates Hodgkin-Huxley (HH) model types, computed in real-time and in analog continuous mode. We developed a library of sub-circuits calculating the elementary mathematical functions encountered in the HH models. Those sub-circuits are organized to form the model set of equations, in which all numerical parameters are dynamically tunable via a mixed analog-digital interface. Neural activity examples are presented to validate the library elements and illustrate the diversity of models simulated by a single ASIC.
引用
收藏
页码:285 / 288
页数:4
相关论文
共 50 条
  • [31] Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis
    Yang, Shuangming
    Wei, Xile
    Deng, Bin
    Liu, Chen
    Li, Huiyan
    Wang, Jiang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 484 - 502
  • [32] Reduction of stochastic conductance-based neuron models with time-scales separation
    Wainrib, Gilles
    Thieullen, Michele
    Pakdaman, Khashayar
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2012, 32 (02) : 327 - 346
  • [33] Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models
    Santana, Roberto
    Bielza, Concha
    Larranaga, Pedro
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2010, 6023 : 170 - 181
  • [34] Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models
    Roberto Santana
    Concha Bielza
    Pedro Larrañaga
    BMC Neuroscience, 13 (Suppl 1)
  • [35] An FPGA-based approach to high-speed simulation of conductance-based neuron models
    Graas, EL
    Brown, EA
    Lee, RH
    NEUROINFORMATICS, 2004, 2 (04) : 417 - 435
  • [36] An FPGA-based approach to high-speed simulation of conductance-based neuron models
    E. L. Graas
    E. A. Brown
    Robert H. Lee
    Neuroinformatics, 2004, 2 : 417 - 435
  • [37] Conductance-Based Adaptive Exponential Integrate-and-Fire Model
    Gorski, Tomasz
    Depannemaecker, Damien
    Destexhe, Alain
    NEURAL COMPUTATION, 2021, 33 (01) : 41 - 66
  • [38] Minimal Conductance-Based Model of Auditory Coincidence Detector Neurons
    Ashida, Go
    Funabiki, Kazuo
    Kretzberg, Jutta
    PLOS ONE, 2015, 10 (04):
  • [39] Conductance-based refractory density model of primary visual cortex
    Anton V. Chizhov
    Journal of Computational Neuroscience, 2014, 36 : 297 - 319
  • [40] Conductance-based refractory density model of primary visual cortex
    Chizhov, Anton V.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2014, 36 (02) : 297 - 319