Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models

被引:0
|
作者
Santana, Roberto [1 ]
Bielza, Concha [1 ]
Larranaga, Pedro [1 ]
机构
[1] Univ Politecn Madrid, Dept Artificial Intelligence, E-28660 Madrid, Spain
关键词
Conductance-based compartmental neuron models; estimation of distribution algorithm; probabilistic models; CONSTRUCTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conductance-based compartmental neuron models are traditionally used to investigate the electrophysiological properties of neurons. These models require a number of parameters to be adjusted to biological experimental data and this question can be posed as an optimization problem. In this paper we investigate the behavior of different estimation of distribution algorithms (EDAs) for this problem. We focus on studying the influence that ate interactions between the neuron model conductances have in the complexity of the optimization problem. We support evidence that the use of these interactions during the optimization process can improve the EDA behavior.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
  • [1] REDUCTION OF CONDUCTANCE-BASED NEURON MODELS
    KEPLER, TB
    ABBOTT, LF
    MARDER, E
    [J]. BIOLOGICAL CYBERNETICS, 1992, 66 (05) : 381 - 387
  • [2] Hardware computation of conductance-based neuron models
    Alvado, L
    Tomas, J
    Saighi, S
    Renaud, S
    Bal, T
    Destexhe, A
    Le Masson, G
    [J]. COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH 2004, 2004, : 109 - 115
  • [3] Hardware computation of conductance-based neuron models
    Alvado, L
    Tomas, J
    Saïghi, S
    Renaud, S
    Bal, T
    Destexhe, A
    Le Masson, G
    [J]. NEUROCOMPUTING, 2004, 58 : 109 - 115
  • [4] The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites
    Eric B. Hendrickson
    Jeremy R. Edgerton
    Dieter Jaeger
    [J]. Journal of Computational Neuroscience, 2011, 30 : 301 - 321
  • [5] The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites
    Hendrickson, Eric B.
    Edgerton, Jeremy R.
    Jaeger, Dieter
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2011, 30 (02) : 301 - 321
  • [6] An Algorithmic Method for Reducing Conductance-based Neuron Models
    Michael E. Sorensen
    Stephen P. DeWeerth
    [J]. Biological Cybernetics, 2006, 95 : 185 - 192
  • [7] Conductance-based neuron models and the slow dynamics of excitability
    Soudry, Daniel
    Meir, Ron
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2012, 6
  • [8] An algorithmic method for reducing conductance-based neuron models
    Sorensen, Michael E.
    DeWeerth, Stephen P.
    [J]. BIOLOGICAL CYBERNETICS, 2006, 95 (02) : 185 - 192
  • [9] Estimating parameters and predicting membrane voltages with conductance-based neuron models
    Meliza, C. Daniel
    Kostuk, Mark
    Huang, Hao
    Nogaret, Alain
    Margoliash, Daniel
    Abarbanel, Henry D. I.
    [J]. BIOLOGICAL CYBERNETICS, 2014, 108 (04) : 495 - 516
  • [10] Estimating parameters and predicting membrane voltages with conductance-based neuron models
    C. Daniel Meliza
    Mark Kostuk
    Hao Huang
    Alain Nogaret
    Daniel Margoliash
    Henry D. I. Abarbanel
    [J]. Biological Cybernetics, 2014, 108 : 495 - 516