Hardware computation of conductance-based neuron models

被引:0
|
作者
Alvado, L [1 ]
Tomas, J [1 ]
Saighi, S [1 ]
Renaud, S [1 ]
Bal, T [1 ]
Destexhe, A [1 ]
Le Masson, G [1 ]
机构
[1] Univ Bordeaux 1, Lab 1XL, CNRS, UMR 5818,ENSEIRB, F-33405 Talence, France
关键词
silicon neurons; conductance-based models; simulation tool; plasticity rules;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We review different applications of silicon conductance-based neuron models implemented on analog circuits. At the single-cell level, we describe a circuit in which conductances are progammed to simulate various Hodgkin-Huxley type models; integrated in a hardware/software system, they provide a simulation tool; an illustrative example is the simulation of bursting neurons of the thalamus. At the network level, we present a mixed analog-digital architecture, where the connectivity and the plasticity rules are implemented digitally and are therefore very flexible. These circuits provide valuable tools for real-time simulations, including hybrid applications where single-neuron or network models are interfaced with biological cells. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [1] Hardware computation of conductance-based neuron models
    Alvado, L
    Tomas, J
    Saïghi, S
    Renaud, S
    Bal, T
    Destexhe, A
    Le Masson, G
    [J]. NEUROCOMPUTING, 2004, 58 : 109 - 115
  • [2] REDUCTION OF CONDUCTANCE-BASED NEURON MODELS
    KEPLER, TB
    ABBOTT, LF
    MARDER, E
    [J]. BIOLOGICAL CYBERNETICS, 1992, 66 (05) : 381 - 387
  • [3] An Algorithmic Method for Reducing Conductance-based Neuron Models
    Michael E. Sorensen
    Stephen P. DeWeerth
    [J]. Biological Cybernetics, 2006, 95 : 185 - 192
  • [4] Conductance-based neuron models and the slow dynamics of excitability
    Soudry, Daniel
    Meir, Ron
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2012, 6
  • [5] An algorithmic method for reducing conductance-based neuron models
    Sorensen, Michael E.
    DeWeerth, Stephen P.
    [J]. BIOLOGICAL CYBERNETICS, 2006, 95 (02) : 185 - 192
  • [6] Hardware Implementation of the Cerebellar Neural Network with Conductance-based Models
    Wang, Tianxin
    Wang, Jiang
    Zhu, Yulin
    Yang, Shuangming
    Li, Huiyan
    Deng, Bin
    Wei, Xile
    [J]. 2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 749 - 754
  • [7] Estimating parameters and predicting membrane voltages with conductance-based neuron models
    Meliza, C. Daniel
    Kostuk, Mark
    Huang, Hao
    Nogaret, Alain
    Margoliash, Daniel
    Abarbanel, Henry D. I.
    [J]. BIOLOGICAL CYBERNETICS, 2014, 108 (04) : 495 - 516
  • [8] Estimating parameters and predicting membrane voltages with conductance-based neuron models
    C. Daniel Meliza
    Mark Kostuk
    Hao Huang
    Alain Nogaret
    Daniel Margoliash
    Henry D. I. Abarbanel
    [J]. Biological Cybernetics, 2014, 108 : 495 - 516
  • [9] A compact a VLSI conductance-based silicon neuron
    Wang, Runchun
    Thakur, Chelan Singh
    Hamilton, Tara Julia
    Tapson, Jonathan
    van Schaik, Andre
    [J]. 2015 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2015, : 442 - 445
  • [10] Reduction of stochastic conductance-based neuron models with time-scales separation
    Gilles Wainrib
    Michèle Thieullen
    Khashayar Pakdaman
    [J]. Journal of Computational Neuroscience, 2012, 32 : 327 - 346