A conductance-based silicon neuron with dynamically tunable model parameters

被引:0
|
作者
Saïghi, S [1 ]
Tomas, J [1 ]
Bornat, Y [1 ]
Renaud, S [1 ]
机构
[1] Univ Bordeaux 1, IXL Lab, UMR 5818, CNRS,ENSEIRB, F-33405 Talence, France
来源
2005 2ND INTERNATINOAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING | 2005年
关键词
aVLSI circuits; neuromimetic devices; Hodgkin-Huxley; silicon neuron;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an analog neuromimetic ASIC. It integrates Hodgkin-Huxley (HH) model types, computed in real-time and in analog continuous mode. We developed a library of sub-circuits calculating the elementary mathematical functions encountered in the HH models. Those sub-circuits are organized to form the model set of equations, in which all numerical parameters are dynamically tunable via a mixed analog-digital interface. Neural activity examples are presented to validate the library elements and illustrate the diversity of models simulated by a single ASIC.
引用
收藏
页码:285 / 288
页数:4
相关论文
共 50 条
  • [41] A Fully Analog Circuit Topology for a Conductance-Based Two-Compartmental Neuron Model in 65 nm CMOS Technology
    Naghieh, Pedram
    Sohrabi, Zahra
    Zare, Maryam
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (02) : 772 - 796
  • [42] A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data
    Druckmann, Shaul
    Banitt, Yoav
    Gidon, Albert
    Schurmann, Felix
    Markram, Henry
    Segev, Idan
    FRONTIERS IN NEUROSCIENCE, 2007, 1 (01): : 7 - 18
  • [43] On conductance-based neural field models
    Pinotsis, Dimitris A.
    Leite, Marco
    Friston, Karl J.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [44] Spatio-temporal averaging for a class of hybrid systems and application to conductance-based neuron models
    Genadot, Alexandre
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2016, 22 : 178 - 190
  • [45] A conductance-based network model of the basal ganglia for probabilistic action selection
    Osamu Shouno
    Johane Takeuchi
    Hiroshi Tsujino
    BMC Neuroscience, 8 (Suppl 2)
  • [46] Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input
    Burkitt, AN
    Meffin, H
    Grayden, DB
    BIOLOGICAL CYBERNETICS, 2003, 89 (02) : 119 - 125
  • [47] Feedback identification of conductance-based models ?
    Burghi, Thiago B.
    Schoukens, Maarten
    Sepulchre, Rodolphe
    AUTOMATICA, 2021, 123
  • [48] Feedback identification of conductance-based models
    Burghi, Thiago B.
    Schoukens, Maarten
    Sepulchre, Rodolphe
    Automatica, 2021, 123
  • [49] Gain modulation and balanced synaptic input in a conductance-based neural model
    Burkitt, AN
    Meffin, H
    Grayden, DB
    NEUROCOMPUTING, 2003, 52-4 : 221 - 226
  • [50] Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input
    A. N. Burkitt
    H. Meffin
    D. B. Grayden
    Biological Cybernetics, 2003, 89 : 119 - 125